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Préambule

La gestion financiere responsable vise la maximisation de la richesse relative au risque dans le
respect du bien commun des diverses parties prenantes, actuelles et futures, tant de I’entreprise
que de I’économie en général. Bien que ce concept ne soit pas en contradiction avec la définition
de la théorie financiere moderne, les applications qui en découlent exigent un comportement a la
fois financiérement et socialement responsable. La gestion responsable des risques financiers, le
cadre réglementaire et les mécanismes de saine gouvernance doivent pallier aux lacunes d’un
systeme parfois trop permissif et naif a I’égard des actions des intervenants de la libre entreprise.

Or, certaines pratiques de I’industrie de la finance et de dirigeants d’entreprises ont été
séverement critiquées depuis le début des années 2000. De la bulle technologique (2000) jusqu’a
la mise en lumiére de crimes financiers [Enron (2001) et Worldcom (2002)], en passant par la
mauvaise évaluation des titres toxiques lors de la crise des subprimes (2007), la fragilité du
secteur financier américain (2008) et le lourd endettement de certains pays souverains, la derniére
décennie a été marquée par plusieurs événements qui font ressortir plusieurs éléments inadéquats
de la gestion financiere. Une gestion de risque plus responsable, une meilleure compréhension
des comportements des gestionnaires, des modéles d’évaluation plus performants et complets
intégrant des criteres extra-financiers, I’établissement d’un cadre réglementaire axé sur la
pérennité du bien commun d’une société constituent autant de pistes de solution auxquels doivent
s’intéresser tant les académiciens que les professionnels de I’industrie. C’est en mettant a
contribution tant le savoir scientifique et pratique que nous pourrons faire passer la finance
responsable d’un positionnement en périphérie de la finance fondamentale a une place plus
centrale. Le développement des connaissances en finance responsable est au cceur de la mission et
des intéréts de recherche des membres du Groupe de Recherche en Finance Appliquée (GReFA)
de I’Université de Sherbrooke.

Les marchés Hors-Bourse ont recu beaucoup d’attention depuis la crise financiere de 2007-2009
et leur réle central dans cette crise a généré de vives inquiétudes de sorte que plusieurs directives
ont été émises par les organismes de régulations financiéres autour du monde pour en assurer le
contrdle. Dans cet article, nous nous intéressons a différentes modélisations de ces marchés a
I’aide de systemes d’équations différentielles pour en étudier I’évolution dans le temps. Plus
spécifiqguement, nous nous intéressons a I’existence d’équilibres pour nos modéles de marché et a
la stabilité de ces équilibres. Nous espérons que nos modeles théoriques pourront éclairer les
participants et les régulateurs de ces marchés pour en assurer le meilleur fonctionnement.
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We study two classes of over-the-counter markets specified by
systems of ODE’s, in the spirit of Duffie-Garleanu-Pedersen [6]. We
first compute the steady states for many of these ODE’s. Then we
obtain the prices at which investors trade with each other at these
steady states. Finally, we study the stability of the solutions of these
ODE’s.

1. Introduction. This article addresses the question of equilibrium
price formation and stability in relatively opaque over-the-counter (OTC)
markets with several traded assets. The financial crisis of 2008 brought sig-
nificant concerns regarding the roéle of OTC markets, particularly from the
viewpoint of global financial stability. Darrell Duffie’s recent monograph,
Dark Markets (see Duffie [5]), documents some of the modelling efforts done
to understand the effects of illiquidity associated with search and bargain-
ing. Duffie also notes that this area is still underdeveloped in comparison
with the vast literature available on central market mechanisms.

Our goal is to shed some light on foundational issues in asset pricing in
OTC markets with several assets. In particular, we study models of OTC
markets described by ODE’s which happen to have a financial market (time
invariant) equilibrium (that is, a steady state). In doing so, we are lead
to ODE’s which have not yet appeared in the differential equations liter-
ature. For the specialists in financial economics, it is well known that in
OTC markets, an investor who wishes to sell must search for a buyer, incur-
ring opportunity and other costs until one is found (see for instance Duffie,
Garleanu and Pedersen [6]). For the case of one asset, the evolution of an
investor’s state can be described by a system of four quadratic differential
equations, an overview is given in Chapter 4 of Duffie [5]. There the author
develops a search-theoretic model of the cross-sectional distribution of asset
returns, under the hypothesis that the eagerness of the investors are the
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2 BELANGE ET AL.

same whether they have the asset or not. Here we study the more general
case with several assets for two classes of extended models which are still
described by systems of quadratic differential equations, but without the
particular hypothesis. One should notice that without changes of positions
the system would stop after a finite time and the market would become
inefficient.

For the first extended model, we do not track the particular asset an
investor wants to buy when she enters the market (it is called the non-
segmented model/case); but the frequency at which she enters the market
depends on that asset. For the second model, we do keep track of the asset an
investor intend to purchase (it is called the partially-segmented model/case).
In both of our cases the quantities of each asset do not have to be the same.
Here we study these two classes of markets in the spirit of Duffie, Garleanu
and Pedersen [6]. When there is only one traded asset, as in DGP, the two
cases collapse to the same model. Unlike, DGP, we do not assume that the
investors’ eagerness are the same whether they own the asset or not. The
departure from this assumption in DGP requires us to use techniques from
the theory of dynamical systems.

In such a framework, the first thing we need to show is the existence of a
steady state (this steady state is designated, in the financial literature, by
the equilibrium (time-invariant) cross-sectional variation in the distribution
of ownership). To gain insights on these systems out of equilibrium, we also
show that each of our systems is asymptotically stable for any given number
of assets in the case of non-segmented markets and for (one and) two assets
in the case of partially segmented markets. We show the latter using the
old criterion of Routh-Hurwitz (see, for instance, Dorf and Bishop [3]). The
criterion gets very steeply more difficult to handle as we increase the number
of assets. (See also Grasselli and Costa Lima [8] for another example of the
use of this criterion in a financial context.)

In Section 2, we describe our two classes of models. In Section 3.1, we
show the existence of a steady steate and compute it explicitly for the non-
segmented case for any given number of assets. In Section 3.2, we do the same
for the case of partially-segmented markets with two assets. Then in Section
4, we obtain the prices on which the investors agreed and we give numerical
exmples in section 5. Finally, in Section 6, we study the asymptotic stability
of our systems.

2. Two classes of models. Duffie [5] and Duffie, Garleanu and Peder-
sen [6] present their model of OTC market with one traded asset as a system
of four linear ODE’s with two constraints which can be reduced to a system
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of two differential equations with two constraints. In this section, we describe
two extensions of their model involving K > 1 assets. Before describing each
model in details, we would like to set up a few general definitions.

The set of available assets will be denoted Z = {1, ..., K'}. Investors can
hold at most one unit of any asset ¢ € Z and cannot short-sell. Time is treated
continuously and runs forever. The market is populated by a continuum of
investors. At each time, an investor is characterized by whether he owns
the i-th asset or not, and by an intrinsic type which is either a ’high’ or
a ’low’ liquidity state. Our interpretation of liquidity state is the same as
in Duffie, Garleanu and Pedersen [6]. For example, a low-type investor who
owns an asset may have a need for cash and thus wants to liquidate his
position. A high-type investor who does not own an asset may want to buy
the asset if he has enough cash. Through time, investors’ ownerships will
switch randomly because of meetings leading to trades, at a rate \;, and
the investor’s intrinsic type will change independently via an autonomous
movement. This dynamics of investor’s type change is modeled by a (non-
homogeneous) continuous-time Markov chain Z(¢) on the finite set of states
E. This set E will be described in more details in each one of the following
subsections since it depends on the model.

At any given time ¢, let p¢(z) denote the proportion of investors in state
z € E, i.e. for each t > 0, u; is a probability law on F.

Let m; denote the proportion of asset i, for all ¢ € 7.

2.1. Non-segmented markets. In this simpler model, we recall that we do
not track the particular asset an investor wants to buy when entering the
market. Let [ and h denote respectively a low liquidity and a high liquidity
type and let o and n denote respectively whether an investor owns or does
not own an asset. Then, the set of investors’ states is fully described as
follows: E = {(I,n), (h,n), (hi,o0), (li,0) }ic1.

As we said earlier, we do not assume the eagerness of investors is the same
when they own the asset and when they don’t. For investors not-owning an
asset, let us denote the switching intensity from low-type to high-type by
v and conversely the switching intensity from high-type to low-type by 74.
For investors owning asset i, we will denote the switching intensity from
low-type to high-type by ~,; and conversely the switching intensity from
high-type to low-type by 74;. In addition, investors meet each other at rate
Ai, and an exchange of the asset occurs when an investor of type (17, 0) (owns
asset i but has a low liquidity state) meets one of type (h,n) (does not own
an asset but has a high interest for acquiring one).

Hence, the dynamical system describing the evolution of the proportions
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of investors in a given state is the following system of 2K + 2 equations with
K + 1 constraints for p(z) for each z € E:

(1) ,[jft(h7 n) = _,LLt(h, ’I’l) Z )‘l/"'t(lz) 0) + ’}/uut(h n) - ’yd,ut(hv ’I’l)
i€l
(2) /:Lt(la n) = :ut(h’ n) Z Ai/‘t(lia 0) — Yulht (la ’I’L) + ’7d/‘t(h’ n)
i€l
(3)  fu(hi,0) = Xipe(h, n)pe(li, 0) + Yuipu (i, 0) — Yaipe(hi, 0), Vi € T
(4) fe(liy0) = =Xipg(hyn) e (li, 0) — Yuipee (13, 0) + Yaipe(hiy 0), i € 7

with the constraints
pi(hi, o) + pe(li,o) =my, Vi € T

Zmi + pe(hyn) + pe(l,n) =1

1€l
This is a first generalized version of the system described in Duffie, Garleanu
and Pedersen [6].

A schematic of the dynamics between investors for this class of market
with two assets is illustrated on Figure 1.

Since equation (2) and equation set (3) can be eliminated respectively
by adding (2) to (1) and by adding each equation of (4) to (3), the initial
system described by a set of 2 + 2K equations is reduced to the following
set of 1 + K equations:

/lt(hv n) = _Nt(hv n) Z )‘i/it(li7 0) + %Mt(l, n) - ’Yd,ut(hv n)
(5) i€

fu(liy 0) = =g (hy n) pe(li, 0) — yuipe (13, 0) + yaipu (hi, 0), Vi € T
with the 1 4+ K constraints
(6) we(hi, o) + pe(li,o) =my, Vi € T
(7) Zmi‘i',ut(h?n)_'_ut(l’n) =1

1€l

Note that in the first set of constraints, m; is the fraction of the investors’
population holding the i-th asset, with », .z m; < 1. The second constraint
is the investors’ proportions normalisation. Moreover, since all parameters
are positive, a minus sign in the system means an exit from the state and a
positive sign means an entry in the state.

The system (5) is the Master Equation. It is non-linear but there is nev-
ertheless for each initial law pg a probability law P#0 on the pure jump
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Owners Owners
(h1,0) (h2,0)
4 4,

Buyers
(h,n)

Y Y Va2 Vaz
7/1,4 2 7/d 2
Pool
(4,1)

A A
Sellers Sellers
(11,0) (42,0)
Figure 1

trajectories Z(t) on FE, which has the Markov property. We do not have,
however, that this law P is the convex combination Y, pt0(2)P%, where
6, are Dirac masses. The existence of P#°, on the pure jump trajectories,
can be obtained by solving a martingale problem which is built with the
intensity measure, m, defined as follows Vi € Z:

m(s, (h,n); (hi,0)) = Nips(li,0);  m(s, (li,0); (I,n)) = Aips(h, n);
m(s, (li,0); (hi, 0)) = Yui; m(s, (hi,o); (li,0)) = vai;
m(s, (lan);(h7n)) = Yu3 m(sa (ha n)a(lan)) = Vd;

for s € [t,00), other terms being 0. This intensity measure satisfies the
conditions of Theorem 2.1, page 216, of Stroock [9]. So, once we have solved
the ODE system, for each initial condition pg, we see that there exists a
probability measure P#°. The fact that this law is supported by the set of
pure jump trajectories can be proved as in Lemma 1, page 588, of Sznitman
[10]. It is such a description that we use below to obtain an expression for
the intrinsic value associated to the state of an investor at each time. Using
the properties of this expression we can then evaluate the directly negotiated
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prices among investors in our relatively opaque market. One can also consult
Appendix I of Duffie [4] for a review of the basic theory of intensity-based
models.

It is worth noticing that the laws P#*0 can be obtained by a functional law
of large numbers as in Ferland and Giroux [7] or by rewriting the system
with the help of a single kernel and then using Theorem 1 of Bélanger and
Giroux [1].

Weill [12] proposed a similar system with the assumption that the eager-
ness is the same for all assets.

2.2. Partially segmented markets. In this class of models, buyers who do
not hold an asset enter the market with a specific asset they want to pur-
chase. Hence, the set of investors’ type is given by E = {(l,n), (hi, 0), (hi,n), (li,0) }icz.
As before, the first letter designates the investor’s intrinsic liquidity state
and the second letter designates whether the investor owns the asset or not.

In this case, the eagerness’ parametrization is the following: If an investor
initially does not own any asset and is a low-type, the switching intensity
of becoming a high-type is 7,; and it now depends on the asset type. If he
initially does not own any asset but is a high-type, he will seek to buy a
specific asset ¢ and his switching intensity of becoming a low-type is 74 and
it now also depends on the asset type. However, if an investor initially is
owning that specific asset 7 and is a high-type (that is, he wants to keep his
asset), the switching intensity of becoming a low-type is 74;. If he initially
owns a specific asset ¢ but is a low-type, the switching intensity of becoming
a high-type is 7,;. In addition, investors meet each other at rate A;, but an
exchange of the asset occurs only if an investor of type (li,0) meets one of
type (hi, n).

Hence, we have the following dynamical system of investors’ type propor-
tions measure p(z) for each z € E, which consists of 3K + 1 equations with
K + 1 constraints:

(8)ue(hi,n) = —Xipe(hi,n)pe(li,0) + Yuipe (L, n) — Yaipe(hi,n), Vi €
(9) /:I/t(l7 n) - Z )‘Z,u't(hZ? n):ut (lZ7 0) - Z %uzut(h TL) + Z idiut(hiu n)
1€T €T 1€T

(10)¢(hi,0) = Aipe(hi,n)pe(li, 0) + vuipee (1, 0) — Yaipe(hi, 0), Vi€ T
(11yu(li,0) = —Xipe(hi,n)pe(li, 0) — Yuipe(li, 0) + Yaipe(hi, 0), Vi € T
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with the constraints

Mt(hiao) + Nt(liao) = my, Viel

Zmi + Zut(hi,n) + pue(lyn) =1

€L i€T

A schematic for the dynamics between investors for this class of models
in a two assets-market (K = 2) is illustrated on Figure 2.

Owners Owners
(h1,0) (h2,0)
Buyers Buyers
(h1,n) (£2,n)

Y Y Va2 Vaz

Z Y B
Var
Pool
111) \
Sellers Sellers
(11,0) ﬂ“ A (12.0)
Figure 2

Note that equation (9) of the previous system can be eliminated by adding
each equation of (8) to (9). Similarly, each equation of (10) can be eliminated
by adding it to the corresponding equation of (11). The system is then
reduced to the following system of 2K equations:

fre(hi,n) = —Nipag (hi, n) g (13, 0) + Fuipi (I, m) — Yaspue(hi,m), Vi € T

(12) ° . . i . .
f1(li, 0) = = Xipug (hi, n) e (1i, 0) — Yyuipis (1, 0) + vaipee (i, 0), Vi € T
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with the 1 + K constraints

(13) wi(hi, o) + pe(liy0) =my, Vi€ Z
(14) Zmi—i-Zut(hi,n)—i-m(l,n) =1

€L i€T

The system (12) is our Master Equation and we define the intensity mea-
sure, m, as follows Vi € Z:

m(s, (hi,n); (hi,0)) = Aius(li,0); m(s, (li,0);(l,n)) = Nips(hi,n);
m(s? (lZ,O),(hZ,O)) = Yui; (S?( 70)7( ’L:O)) = Vdis
m(s, (lvn);(hi’n)) = Yuis (Sa (hl n)v( )n)) = Vai;

for s € [t,00), other terms being 0.
Vayanos and Wang [11] proposed a similar two asset market.

3. The steady state of ODE systems. We have a steady state when
the left hand side of our systems (5) and (12) are equal to zero. That is,
when there is no longer dependence on time.

3.1. Non-segmented markets. Here, we need to solve the following system
of equations:

(15) 0= —pu(h,n) > Xipli, 0) + yups(l,n) — vap(h, n)
€T
(16) 0 = —Xip(h, n)p(li, 0) — yuip(li, 0) + yaipu(hi, 0), ¥ € T

First, note that we can eliminate pu(l,n) in (15) by using the constraint
equation (7). Thus, (15) becomes

hnZ)\lulzo ) + Yu <1—z:mZ )—’ydu(h n)

1€l 1€L

(17) = —p(h,n) Z Aip(li, 0) + yu <1 - Z mz) —yu(h,n)

€L 1€



OTC MARKET MODELS WITH SEVERAL ASSETS 9

where v £ v4+7.. Moreover, to simplify the last equation, we then substract
the K equations of (16) to (17) to have

0=—p(h,n) Y Xip(li, 0) + > iga(h, n)u(li, 0) + Yuips(li, 0) — Yaipa(hi, 0)]

€L €L
K
+Yu (1 - Zmz) —yu(h,n)
=1
= uipli, 0) = > yaipu(hi, 0) + Yu (1 - ZW) vu(h, n)
€T €T 1€T

By using the constraint equation (6) to replace each p(hi,o) in the last
equation, we then have

0= Z Yuitt(li, 0) Z’de (12, 0)) + yu (1 - Zmz> —yp(h,n)

€T €T €T
(18)
= Z%’M(li, 0) - Z'de’mi + Y (1 - Z mz) —yu(h, n)
i€ i€l i€

where ¥i £ Ya; + Yui-
Furthermore, each of the K equations in (16) gives us the identity
. VdiMi
19 li,0) = ————
(19) p(li,0) Aipe(h,n) + i
which can be substituted into (18) to have

(20)

Vdi Ty Z
T O VLS SN (1—zmz) Juthm).
i€T “Aiphy ) + i i€Z i€T
Then, one need to solve F(x) = 0 for # £ p(h,n). Hence we get u(h,n) from
which we get by (6) u(l,n) = 1—pu(h,n)—>,c7 mi, each u(li, o) by identity
(19) and finally, each u(hi,0) = m; — u(li, 0), by (7).

The challenge here is to solve for F/(z) = 0. First, note that we have

1. F(0) =y, (1 =Y ,egmi) > 0since y,, >0 and >, c7m; < 1

2. F (1= c0mi) < —va (1= ;ezmi) <O0;

3. F(z) is a decreasing function for = > 0.

So there is a positive root between 0 and 1 — >, 7 m; which can always be
calculated numerically. Thus, there always exist a stationary solution p(h,n)
for any K.



10 BELANGE ET AL.

3.2. Partially segmented markets. From our Master equation (12), we
need to solve the following system of equations:

(22) 0 = —Xip(hi, n)p(li, 0) — yuip(li, 0) + yaspu(hi, 0), Vi € T

with the constraints
(23) w(hi,o) + pu(li,o) =m;, YieT
en S+ Y ki) + i) = 1
ieT e
Using each of the constraint (23) and substituting them in each equation of
(22) for p(hi,o), we get
0 = —Aip(hi, n)p(li, 0) — Yuipp(li, 0) — vaipa(li, 0) + yaimi, Vi € T

and thus

VdiTi

(25) ulli,0) = Aipu(hi, ) + i

, Viel

where v; £ Yy + Yai-
Now, subtracting each (22) to each (21) and using constraint (24) to
substitute for p(l,n), we get:

0 = Fui [1 =Y mi— > p(hi, n)] — Jaip(hi, n) + Yuips(li, 0) — vgip(hi, 0), Vi € T
€L i€

= 51/‘(}”/7 n) = %uz <1 - Z mz) - 5uz Zﬂ(h% n) + '7uz,u(l7’a 0) - Vdiu(hia 0)7 Viel
i€l j#i

Using constraint (23) to substitute for p(hi,o) and substituting (25) for
w(li, 0), we finally get:

7uz YiYdiTs
hi,n) (hj,n) + =
h 5 O, m) 70

(26) b
- iy | Jui (1—Zml>7W€I
i i€l

Hence, we have to solve a nonlinear system of K equations in K unknowns
p(hi,n). Once we have solved for p(hi,n), we can get u(li,o) by (25) and
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deduce that p(hi, 0) = m;—pu(li,0), by (23), and that pu(l,n) = 1=, .7 m;—
> iz W(hi,n), by (24).

Since the case K = 1 is the same whether the market is non-segmented
or partially segmented, we have the result by the previuous subsection. We
will prove the case K = 2 in the following subsection.

3.2.1. Special case of two assets. From (26) with i € {1,2}, we get the
following system to solve:

Yul Y1Yd1m1 Yul Yd1
plhln) = == mulh2n) + o L) ) A 1= ma) =
w2 Y2Yd2me Va2 Va2
h2,n hl,n)+ = — (1—=m1—m9)— =—m
Hh2) = = O S otz ) TR (T T 5,
or by rearanging terms:
(27)
¥ Y1Ya1m1 Yd1
h2,n ———u(hl,n) + = +1—m; —mo— =—m
M( ) 'Yul Iu( ) Yul (Alﬂ(hl n) + ’71) ! 2 Yul !
(28)
y Y2 Ya2ma Va2
hl,n —=—u(h2,n) + +1—my—mg— =—m
M( ) 'Yu2u( ) ’7u2()‘2ﬂ(h2, n) + ’72) ! 2 Yu2 2

Note that the first curve (27) passes through the following two points in the
set {(z,v)}, with z £ pu(hl,n) and y 2 u(h2,n) :

(0,0) < (0, 1 —=m; —ma) <(0,1)

and

?1 Y1 ’Ydl
I—mi—mg, —(1=m1—m = -1+ -1 = (1.0
< 1 2 ( 1 2) ('Yul > <)\1(1 —mi — TTLQ) +m > ’Yul 1) ( )

because Jll = 7“17% > 1. By symmetry, we get that the second curve (28)

passes through the points

(0,0) < (1 =my —mg, 0) <(1,0)

and

72 Y2 Yd2
—(1—mi—m — -1+ —1)=—m2, 1—m < (0,1
( ( 1= m) (%2 ) <A2(1 —mi —mz) + 72 ) Tz b ) (0.1)

because % > 1.
u
Hence the two curves must meet in the positive unit square and we have
a stationary law.
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4. Asset pricing. Let C(t) denote the consumption process. Let U a
utility function and r, the money market interest rate (which is assumed to
be constant). As before, we also have Z(t), our non-homogeneous Markov
chain describing investors’ type (similarly to Duffie, Garleanu and Pedersen
[6]). We have the following infinite-horizon expected utility maximization
problem:

(29) sup E[ / e (CW))du | Z(t) = 2, W (t) = w
{C(©)01(v), 0k ()} Lt

where the wealth process {WW(t),t > 0} satisfy the following equation:
dW (t) = rW(t)dt — C(t)dt
(30) + ) [0:(8) (5ni — i1 z0)=qriso)y) At — Po(t)d6;(t)]
1€T
with W (0) = wo the initial wealth, P;(t) is the trade price between agents.
0;(t) is the ownership process for the i-th asset defined by

(31)
1, if investor owns the asset i, i.e. if Z(t) € {(hi,0), (li,0)}
0;(t) = .
0, otherwise
Note that df;(¢) here is simply a shorthand for 6;(t+) — 6;(t—).
Following Duffie, Garleanu and Pedersen [6], we will assume for simplicity
that investors are risk-neutral, that is we can let U(C(t)) = C(t). Hence,
from (29), we define the following optimization problem:

(32)

It W(t), Z(t)) = sup E [ / e CW)dv | Z(t) = 2, W(t) = w
{C(),01(v),....0k (v)} ¢

subject to the budget equation

(33) C(t)dt = rW(t)dt — dW (t) + dA(t)

where

(34)  dA() 2 [0i(t) (6hi — Sail{zt)=(i,0y) At — Pi(t)d0;(t)]
=

By (32) and (33), we can write

/ e_r(“_t)C(v)dv:/ re_r(”_t)W(v)dv—/ e_r(“_t)dW(v)—i—/ e "D d A )
t t

t t

=W(t)+ / e "M dA(v), by Itd’s Lemma
t
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and thus

I(t,W(t),Z(t)) = sup E [W(t) + / " OTDAAW) | Z(t) = 2, W(t) = w}
{C(©).01(v),-0x (v)} ¢

= sup {w +E [/ e TTDdAW) | Z(t) = z] }
{C(©),01 ()0 (v)} t

4.1. The intrinsic values V (t,z). We now want to calculate for each state
z the intrinsic prices at time ¢

(35) V(t,z) 2 E [ /t h e " OAA) | Z(t) = z] .

Let 7 be the time of the first jump in the chain Z(t) after time ¢, so we
can rewrite (35) as

V(t,z)_EUtT -0 d A(v) | Z(t) = }+E[/Tooe_’"(”_t)dz4(v)]Z(t)—z

By conditional iteration, the second term can be written as

B| [T et | 20 - 5

_E :]E [ / e =0q A | Z(T)] | Z(1) = z]
=E :IE [ /T ” e (= H=0)g A(v) | Z(T)} | Z(t) = z]

_E|eOE [ / T eI aA®) | Z(T)} | Z2(t) = z}

—E :e*’"“*ﬂV(T,Z(T)) | Z(t) = z] , by (35)
and thus
V(t,z) =E M AA) | Z(t) = } +E [e—m—”V(T,Z(T)) | Z(t) = z} :
In the next subsections, we present the intrinsic value for each state z € £

for the non-segmented and the partially segmented models. The details of
calculation are in Appendix A.1.
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4.1.1. Intrinsic values for the non-segmented markets. The details of cal-
culation for this class of models are in Appendix A.1.1. The results are:

(36) V (¢, (I,n))

(37) V(t, (h,n))

(38)V (t, (hi,0))

(39) V (t, (li,0))

/too V(s, (hyn))yuexp {—(yu +7)(s —t)}ds

> /too (V (s, (hi,0)) — Pi(s)) Xips(li, 0)

i€l

XeXP{—/ <7“+'7di+2)\¢,uv(li,0)> dv}ds
t

i€l
+/ Vs, (I,n))Yas
t

xexp{—/ <T+’7di+2)\iﬂv(li,0)) dv}ds
t

€L

/t h ( /t ) e_r(”_t)éhidv> aiexp {—ails — )} ds
+ /too V (s, (li, 0))yaiexp {—(7ai +7)(s — 1)} ds
([ e = 0 ) s+ A
Kexp {— /t (Vi -+ Nift (B 1) dv} ds

+ [T Vs o

Kexp {— /t (Vo + 7 + Aigtn(By ) dv} ds

+/Oo (V(s, (I,n)) + Pi(s)) Xipes(h,m)
t

X eXp {—/ (Yui + 7+ Aipty(hyn)) dv} ds
t

4.1.2. Intrinsic values for the partially segmented markets. The details
of calculation for this class of models are in Appendix A.1.2. The results
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are:

oy vieam) = Y [ "V (s, (hi )

=
X exp {— <r+ ;%> (s — t)} ds
@V i) = [ (Vs (hi0) = P(s) Ao
Kexp {— /t G + 7+ Mg (i, 0)) dv} ds
[V )
Kexp {— /t Gai + 7+ Aiproli, 0)) dv} ds
A2V (t, (hi,0)) = /t  arexp {—vails — )} ( /t ) e’”(vt)am-dv) ds
+ /too ~aiexp {—(vai + 1) (s — )} V (s, (I, 0))ds
V(e io) = [ ([0 = b)) (st i)
X exp {— /t (Yui + Niptw (hi, m)) dv} ds
+ [ Vs o
X exp {— /t (Yui + 7 4 Nipeo (hi, n)) dv} ds
# [TV ) + R dchicn)
X exp {— /t (Yui + 7+ Nipto (hi, m)) dv} ds

4.2. ODE’s for V(t,z). As we want to compute the steady prices, we
first need to compute the derivative of V (¢, z) in time for each states z. We
can note from the previous section that V (¢, z) is always of the form

V(t,z) = Z/t gr(z;t,s)ds
k=1
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0
= aV(t’, Z)
D o~ [®
= a /t gk(zvt7 S)dS
k=1
— th/ gr(z;t,5)ds
k=1 t
m )
; < gk(zv 7t)+ . 8tgk’(zat75)d8)

Explicit details of these calculations are presented in Appendix A.2.

4.2.1. ODE’s for V(t,z) for the non-segmented markets. The details of
calculation for this class of models are in Appendix A.2.1. The results are:

44V (t, (Ln)) =
(45)7(75, (hvn)) =

(46Y(t, (hi,0)) =
47V (¢, (li,0)) =

-Vt (h n)) +(7u+7“)V(t7(l,n))

= (V(t, (hi, 0)) — Pi(t)) Nipue(li, 0) — vqV (£, (I,n))
€L
+ (w Y Al 0)) V(t, (h,n)
i€l

(PYdi + r) V(t> (hi7 0)) - ’Ydiv(tv (liv O)) - (5hi
(Yui + 7+ Aippe(hy ) V(E, (I2, 0)) = YV (2, (i, 0))
=i (hy ) (V (¢, (1, 1)) 4+ Pi(t)) — (Oni — dai)

4.2.2. ODE’s for V(t, z) for the partially segmented markets. The details
of calculation for this class of models are in Appendix A.2.2. The results are:

(48) V(t,(l,n)) =

(49 (t, (hi,n)) =

(50)V(t, (hiy0)) =
(61) V(t,(li,0)) =

4.3. Equilibrium

value are computed by putting %V(t, 2)

_ZV (hi,n))Yui + (r—|—27m) V(t, (I,n))

i€l i€l
— (V(t, (hi,0)) = Pi(t)) Nipe(li, 0) = V (¢, (I, n))Fas
+ (Yai + 7+ Aipe(liy0)) V (¢, (hi,n)
(ai + 1) V(t, (hi, 0)) —va:V (L, (I3, 0)) — Op;
(Vui + 7+ Aip(hi, n)) V (¢, (11, 0)) — iV (¢, (hi, 0))
=ipte(hi, n)(V (L, (I,n)) + Pi(t)) — (0ni — dai)

intrinsic values and prices. The equilibrium intrinsic

‘V(Z) = 0 for each state z € F.
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4.3.1. Equilibrium prices for the non-segmented markets. From the four
equations (44), (45), (46) and (47), we get the following system:

0=—vV(h,n) + (yu+r)V(ln)

0=—> (V(hi,0) = P,) \ip(li,0) — gV (I,n) + (w ) Nl o)> V(h,n)

i€T i€T
0= (g + 1)V (hi,0) — va;V (li,0) — Opi, Vi€
0= (vui + 7+ Xip(h,n)) V(li,0) — vuiV (hi, 0)

— Xipp(h,n)(V(I,n) + Pi) — (Oni — 0ai), Vi€Z

Rewriting this system, we get

rV(l,n) =y (V(h,n) = V(l,n))
rV(h,n) =Y Nip(li, 0) (V(hi,0) = V(h,n) = P;,) +va(V(I,n) — V (h,n))
€L
rV (hi, o) = v4i(V (li,0) — V(hi,0)) + dps, Vi€ T
rV (li,0) = Nip(h,n)(V(l,n) — V(li,0) + P;)
+ Yui(V(hiy0) — V(li,0)) + Opi — Oas, Vi€ T

Written in a similar manner as the system A5 in Appendix of Duffie, Garleanu
and Pedersen [6], but without marketmakers (p = 0), we have the following
generalized system:

YV (h, 1)
Yu + 7T
V(h n) _ ZieI )‘i:u(liv 0)(V(hi7 O) - Pz) + ’Vdv(la n)
’ Yo+ 1+ D ez Ain(li, 0)
~ 74V (i, 0) + Op
B Vi + T
Aipe(hyn)(V(I,n) + P;) + yuiV (hi, 0) + dpi — 0
Yui + 7+ Aipa(h, )

V(l,n) =

V(hi, o)

,Viel

V(li,0) =

, Viel

Now, to find the price P;, we first rewrite the system in terms of the
reservation prices for buyers A" = V(hi,0) — V(h,n) and sellers Al =
V(li,0) — V(I,n). As we must have Al < P, < A" it implies that

(52) Py = (1-q)Al +qA}

where ¢ € [0, 1] represents the bargaining power of agents and is assumed to
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be the same for each asset ¢ € Z. Then,

rV(l,n) =y (V(h,n) = V(l,n))

rV(h,n) =3 Xip(li,0)(1 — q)(AF = Ab) +44(V(I,n) — V(h,n))
i€T
rV (hi,o0) = v4;(V (li,0) — V(hi, 0)) + Opi, Vi €T
rV (li,0) = Nip(h, n)q(AF — ALY + 4, (V (i, 0) — V (1i,0)) + 0p; — dai, Vi€ T

Define A? £ V(I,n) and A® £ V(h,n) — V(I,n) and rewrite the system:

TAO = p)/uAe
rA¢ =3 Nip(li,0)(1 — @) (A = A)) — (yu +7a)A°
i€
rAP = qgi(A] = Al = A%) = 3" Aipu(li, 0) (1 g) (A — Al +7aA° + 0y, Vi €T

€L
rAL = Nip(h,n)qg(AF — AL) — i (AL — Al — A®) — 4, A® + 63 — 0as, Vi€ T

which is a linear system of 2K + 2 equations in 2K + 2 unknowns. If we
define the vectors

(53) A2 (Ag, A, AV AR AR ALAL L ARD)T
and

(54) 0 £ (07(); 5h17 5h2a (EXP) 5hK7 5h1 - 5d1; 5h2 - 6d27 "'76hK - 5dK)Ta

it gives us the following system to solve (which is similar to the system A7
in Appendix of Duffie, Garleanu and Pedersen [6]):

(55) MA =6

where M is a (2K + 2) x (2K + 2) coefficient matrix defined in Appendix
B.1.

If M is invertible, we can solve this system by computing A = M~ and
then compute asset’s price using (52).

4.3.2. Equilibrium prices for the partially segmented markets. Thus, from
the four equations (48), (49), (50) and (51) of V' (¢, 2), it gives us the following
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system:
Z V(t, (hi,n))Yui + (7“ + Z%z) Vit (l,n))
1€L €L

0= _AZM(lZ7 O) (V(hlv O) - Pz) - :\Yidzv(l? 7’L) + ('A}jdz +7r+ )\Z/L(l% 0)) V(hZ¢ n)a Viel
0= (y4i +7) V(hi,0) = va;V (li; 0) = bpi, Vi€ L
0 = (yui + 7+ Aega(hi, 1) V(Ui 0) — 7uiV (B 0) — Nigahi m) (V (1, m) + P) — (i — bas), Wi € T

By rewriting this system, we have

Z%Z (hi,n) —V(l,n))

€L
T‘V(hl, n) = )‘z:u(l% O) (V(hlv 0) - VU”) 7’L) - F)z) + :Yidz(v(lv n) - V(h‘la n))a Viel
rV (hi,o0) = v4;(V (li,0) — V(hi,0)) + Opi, Vi €T
rV (li,0) = Xip(hi,n)(V(I,n) — V(li,0) + P;) + yui(V (hi,0) — V(li,0)) + 0p; — dgi, Vi€ T
Now, to find the price P;, we first rewrite the system in terms of the

reservation prices for buyers A? = V(hi,0) — V(hi,n) and sellers Al =
V(li,0) — V(I,n). As we must have Al < P, < A" it implies that

(56) P, = (1—q)Al +gAl

where ¢ € [0, 1] represents the bargaining power of agents and is assumed to
be the same for each asset i € Z. Then, we have

Z'ym V(hi,n) —V(l,n))
€L
PV (i, n) = Nip(li,0)(1 — q) (A} — Al) +74s(V (L) = V(hi, ), Vi€ T
rV (hi, o) = v4;(V (li,0) — V(hi,0)) + Opi, Vi €T
rV(li,0) = Nip(hi, n)q(A} — AY) + 74 (V (hi, 0) — V(1i,0)) + 6p; — 0ai, Vi €T

Define A® £ V(I,n) and A¢ £ V(hi,n) — V(l,n) and rewrite the system:
1€T
rA§ = \ip(li,0)(1 — q)(A} — A) = FaAf = ) Fuild§, Vie T
€T
rAL = qai(AF = A = AF) = Nip(li, 0) (1 — @) (A7 — AY) + T A] + 0pi, Vie T

rAL = Np(hi,n)g(Al — Al — (AL - Af) — (Z YuiD ) + Opi — Oai, Vi€
1€l
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which is a linear system of 3K + 1 equations in 3K + 1 unknowns. If we
define the vectors

(57) A2 (AYAS NS, A AR AL A ALAL L AT

and

(58) &£ (0,0,0,...0,0n1, 6h2, -+ Ohkc, On1 — Od1s On2 — 8a2, o Onic — Sarc)”
it gives us the following system to solve:

(59) MA =4

where M is a (3K + 1) x (3K + 1) matrix defined in Appendix B.2.
If M is invertible, we can solve this system by computing A = M 1§ and
then compute asset’s prices using (56).

5. Numerical examples for markets with two assets. This section
contains a few numerical results for our two classes of models. We present
these examples primarily for an illustrative purpose.

We will use (and modify) the parameters used in Duffie [5]. We also refer
to the reader to this book for the empirical justification of these parameters.
That is, we assumed that v,1 = Yu2 = Y = 5 and 41 = Y42 = Y4 = 0.5
for the non-segmented class, and Y,1 = Yu1 = Yu2 = Yu2 = D and vg1 =
Ya1 = Yd2 = Va2 = 0.5 for the segmented class. We moreover assumed that
A1 = A9 = 1250. For comparison purpose we split in two Duflie’s value of
m = 0.8 and use m; = mo = 0.4.

We can see in Table 1, for the non-segmented class, under these param-
eters, u(ll,0) = p(12,0) = p(l,0)/2 and p(hl,0) = pu(h2,0) = wu(h,o0)/2,
where u(l,0) and p(h,0) are the steady states for Duffie’s one-asset mar-
ket. Note also that the prices are identical and equal to the price obtained
in Duffie [5]. The steady state proportions are different for the partially
segmented market because the expected return times of the states are dif-
ferent. For example, it is shorter to return to (I, 0) because Yy1 +u2 > Yu SO
u(li, 0), equal to the reciprocal of that expected return time, is greater than
in the non-segmented market. Conversely, we get a smaller u(hi, o) because
of the longer cycle in the chain that passes through (hj,0), j # i. In turn,
the misallocation of assets, (li,0), decreases slightly the steady state price
(see previous scheme on Figure 2).

We now turn our attention to the sensitivity of prices with respect to
A. We still assume that Ay = Ao = A. We can see generally that the price
will tend to the perfect market price (1/r = 20) when frictions diminish,
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Table 1: Models outputs. Steady state proportions and equilibrium prices.

Asset i Au(h%n) ,LL(h,TL) “(17’70) /L(hZ,O) ,LL(l,TL) P

Non-segmented

Asset 1 - 0.1118 0.0014 0.3986 0.0882 18.5451
Asset 2 - 0.1118  0.0014 0.3986  0.0882 18.5451
D 0.0028  0.7972
Segmented
Asset 1 0.0772 - 0.0020  0.3980 0.0456 18.3930
Asset 2 0.0772 - 0.0020 0.3980 0.0456 18.3930
> 0.1544 0.0039  0.7961

i.e. when A\ — oo. The prices of the second asset in the partially segmented
market exhibit a different behavior though. Its parameters 49 and v, were
doubled (see Figure 3).

20 ; : : —— i i i L ———
Asset 1 (Non-Segmented) ‘ I
—x-Asset 2 (Non-Segmented)
—Asset 1 (Segmented)
18| e 2 (Segmented) . 7

12F .

10} R

8 L L

10 10° 10*
A

Figure 3: v = Yu1 = Yul = Yu2 = 5, Ya = Va2 = Ya1 = Va2 = 0.5 with
Yu2 = 2Vu1 and Y2 = 2741-

6. Asymptotic stability. We analyse the asymptotic stability of our
ODE’s systems by computing the characteristic polynomial of their Jaco-
bian. If we can prove that all eigenvalues have negative real parts, then we
have asymptotic stability (see Braun [2]). We do it directly, in a manner
similar to that of Weill [12] for the non-segmented markets with any given
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number of assets. Thus, it gives us, in particular, the asymptotic stability for
partially segmented markets with one asset. In order to prove the asymptotic
stability for partially segmented markets with two assets, we resort to the
Routh-Hurwitz criterion which gives specific conditions on the coefficients
of a polynomial to ensure that the real part of all its root are negative (see
Dorf and Bishop [3]).

As mentioned before, our limitation in this latter case comes from the
fact that the Routh-Hurwitz stability criterion gets very steeply harder to
verify as we increase the number of assets.

Because the Jacobian calculations involves a linear approximation of our
systems close to its steady state, we prove in fact local stability. That is, we
have asymptotic stability of our systems for a subset of initial laws pg close
to the steady state. Duffie, Garleanu and Pedersen [6] prove, more generally,
the stability of their system for any initial law pg. Their technique relies
on the fact that they have a single asset and their assumption on investors’
eagerness.

To simplify notations in the following subsections, we define 3; £ i +7ai,
Vi & Yui +vai and v £ 4, 4+ v4. Moreover, let € € C denote the eigenvalue of
the following characteristic polynomial of each system’s Jacobian matrix.

6.1. Non-segmented markets. For this class of models, we will prove the
system’s stability for any K assets by showing directly that all eigenvalues
of the Jacobian have negative real parts.

Let 21 = 14(11,0), x2 2 1(12,0), ... , zi¢ = (1K, 0) and v = g (h,n).
Then, by substituting constraint (7) for (I, n) and constraints (6) for each
pe(hi, 0), we can rewrite the system (5) as:

/
Ty = —MT1v— T+ Yo
/
Ty = —AaT2V — Y22 + Ya2m2
/
T = —AKTKV —VKTK + VdKMK

Vo= —Zkixw—’ywr% (1—2”%)

1€T i€
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We compute the following Jacobian matrix of the system at its steady state:

—)\111 -7 0 0 —)\1x’1
0 -2V — Yy ... 0 — A2
J— . . .
0 0 v —AKTK — VK —AKTK
—)\1’1) —AQU —)\KU — (Ziel’ Aﬂ?z) -
-1 0 0 0
0 — 0 0
= : : -D
0 0 —vk 0
0 0 0 —
where

D11 Di2 >
D—
( Doy Dy
with Dy = DiagK()\iU), Dy = ()\1.7)1, Ao, ..., )\K$K)/, Dy = ()\1?./, A20, ..., )\KU)
and DQQ = ZiGI )\zxz
Let e = (1)ax41x1 and let & € C be the eigenvalue for J associated with

the eigenvector y = (y1,y2)’, where y1 = (y11, Y22, ..., y2 )" and yo € R. Then
we have:

(60) Diagy (vi)y1 + Diiy1 + Digy2 = =&
(61) YYy2 + Da1y1 + Dooyo = —Eyo

The inner product of €’ with (60) gives
(62)
MY+ veyi2 + . FVKYIK T+ Z Aivyri + (Z )\ixi> y2 = —§ th’
€L 1€l 1€l

If we expand (61), we get

(63) Yo+ Y Aivyni + (Z >\i$i> y2 = —Ey2

i€ i€
Thus, subtracting (63) to (62), we get
YY1 + 2012 + e FYEYIK Y Yni — 2 — Eya =0
ieT
= ¢ - [Diagg (7i) + &y — (v + y2 =0
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Case 39 = 0: We have

—71 0 0
0 -7 .. 0
. . Y1 =&y
0 0 e VYK

In this case, we must have Re(§) < 0 and the system is asymptotically stable.

Case 12 # 0: We can suppose without loss of generality that yo = 1. So,

vi+ &
Y i+ Omi=v+E=> ) =1
iez iez 7

Then (60) becomes

7Y11 A1vy11 A1 Y11

Y2Y12 A20Y12 A2T2 Y12
. + . + . =< .

YKY1K AKVYIK AKTK V1K

It implies that:

, = ——— Viel
Y f + v + )\iv

Re ( n +€yli> =1,
= te

1
Re(y1i,) > 0< Re < ) > 0.
Ytip

Since

there exists ig such that

Then we see that
Re(§) < —(7ip + Aigv) <0

Thus, the system is asymptotically stable for any number of assets.
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6.2. Partially segmented markets. Because the partially segmented and
the non-segmented markets are equivalent for one asset, the stability for one
asset in this case is already proved. So we will verify it for the case K = 2.

Let 2 jy(hl,n), y 2 pe(h2,n), z 2 p(11,0) and v = 1;(12,0). Then, as
before, we can rewrite the system as:

r = M2z =T — Y1y + Jur (1 — my —ma)
= =AYV — VoY — Yu2® + Yu2(1 — my — ma)
= —\Mxz— 712+ 7am
Vo= = Ayv — Y20 + Yazm2

We compute the following Jacobian matrix of the system at its steady state:

A1z — 71 —Yul -\ 0
J— —Yu2 —A2v — Y2 0 — Aoy
*)\12 0 *)\156 -7 0
0 —A2v 0 —A2y — 72

The characteristic polynomial of J is

Az -7 —¢ —Yul =1z 0
T — —Yu2 —Av =2 — ¢ 0 —A2y
det(J — £I) = det s 0 Az — € 0
0 —Agv 0 —Aoy —v2 —§

= §4 + a1§3 + a2§2 4+ asz€ + ay

where:
a1 = Yar Va2 + Y + 2 + Yar + Va2 + Yur + Fuz + A0 +y) + Ai(z + 2)
az = Y2 + Y ¥a + YueYar + Y Va2 + YueYa2 + Yo Va2 + YulVul + Yu2Yul

FYd2Vul + Yl Vu2 + Yu2Vu2 + Va1 Vu2 + Yl A2V + Yu2 A2V + A2Ya1v + A2Yu1v
FYu2 M T+ A Ya1® + A Ya2® + MY T + Aue® + A Aur + 1Ay
FX2Va1y + A2Vazy + A2Vury + A2Vu2y + A Aexy 4+ A1 (Yul + Yuz + Va2

+Yu2 + A2(v + )2 + Va1 (Va2 + Yuz + Va1 + Va2 + Yu1 + Fuz + A2(v +y)
+X12) + Yao(Yur + Va1 + Va2 + Fu1 + Fuz + Aov + Mi(z + 2))
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az = YurYu2¥a1 + YurVu2Va2 + Y1 Va1 Va2 + Yu2 Va1 Va2 + YulYu2Yul + Yul Va2 Yul

FYu2Vd2Vul + V1 Yu2Yu2 + Yur Va1 Yu2 + Yu2Vd1Vu2 + YulYu2zA2v
FYu1 A27Yd1V + Yu2A2Yd1V + Va1 A2 Va1V + Yu2 A2 Vul ¥ + Yu2 A1 Va1
FYu2A1Yd2T + MVa1 V2T + Yu2 MVl T + AMVa2Vul T + Yuz A1 Yu2®
FA1Vd1Yu2® + Y2 A1 A20T + A A2V 10T + M AVl VT + Yu1 A2 Y1y
FrurA2Va2y + AoV Va2y + Yur A2Vu1y + A2Va2Yuly + Yur A2 Vu2y
FA2Va1Vu2y + M AV TY + A A2Va2ry + A1 A2 Vu1 Y + A1 Ao Vu2ry
FA1 (a2 (Va2 + Fu2 + A2v) + A2 (Va2 + Fu2)y + Yu1 (Yu2 + Va2 + Fu2
+X2(v + )z + Va2 (YazYut + A2Yu1? + A1Ya2® + MYl @ + AiYu2®
FA1 208 4+ Va1 (Yaz + Yuz + A2v 4+ A1x) + A1 (Jaz + Yuz + A2v)2
+vu1 (Va1 + Va2 + Fu1 + Fuz + A2v + A12)) + Ya1 (Far Va2 + Va2 Fut
FYd1Vu2 + A2Va10 + A2Vu1v + AVary + A2Va2y + A2Yury + A2Vu2y
A1 (Va2 + Yuz + A2(v + ¥))2 + Ya2(Yar + Va2 + Fu1 + Fuz + A2v + A12)
Fyu2(Yar + Va2 + Vul + Yuz + A2v + A12))

(Va1 + Yu1 + A12) (Va2 + Yu2) (Gur (Va2 + A2v) + Va1 (Va2 + Yuz + A2v))
+ A2 (Va2 Vur + Va1 (Vaz + Fu2))y) + (var + Yur) A (Va2 + Yu2) (Faz + Fu2
+A20) + A2 (Va2 + Yu2)y)?

(1>

a4

We can readily see that ai,ao,as,aqs > 0. We need furthermore to check
that ajasas — a% — a%a4 > 0 in order to satisfy the Routh-Hurwitz criterion
which enables us to conclude that the system is stable. This last step is done
using Mathematica. We expand the algebraic expression ajasas — a% — a%a4
and then simplify it to see that the result is a (very long) multiplication
and addition of positive numbers. This shows, by Routh-Hurwitz, that the
real parts of all eigenvalues are strictly negative ensuring the asymptotic
stability of the system.

7. Conclusion. In this paper, we studied two extensions of the OTC
market model of Duffie-Grleanu-Pedersen [6] to markets with several assets.
We showed, for the first extension called non-segmented, the existence of a
steady state and its asymptotic stability for any number of assets. For the
second class of models, called partially segmented, we show the existence of
a steady state and its asymptotic stability for the case of a market with two
assets. The general extension to an arbitrary number of assets is currently
investigated.

8. Acknowledgements. The first author is thankful to the Université
de Sherbrooke and its Faculté d’administration for their start-up grant.
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APPENDIX A: CALCULATION DETAILS
A.1. Intrinsic values V (t, z).

A.1.1. Intrinsic values for the non-segmented markets. For the non-segmented
markets, we have:
Case z = (I,n): In this case, the only jump possible is towards the state
(h,n) with a time 7 = 73, where 75, — t ~ &(7y,). Then, for t < v < 7, from
(31) and (34), we have 6;(v) =0, Vi € Z, which implies that dA(v) = 0 and

V(t,(I,n) =0+ & [e—rm—t)V(Th, Z(m)) | Z(t) = (I,n)

- / T eV (s, (hyn)) i (5)ds

t

= [TV s (e (s - ) ds

_ / TV (s, () ywexp {— (e +7)(s — £))

Case z = (h,n): The next jump will be towards (I,n) or (hi,o), for any
i € Z. Since the investor automatically buys the first available asset, we
have 7 = min{7;, 7; : ¢ € Z} the time until the next jump, where 7, — ¢t ~
E(~q) but, for each ¢, 75,; has a jump intensity A;u¢(li,0) and the following
probability distribution(see Lemma 1 of Sznitman [10]):

P{r; > s|Z(t) = (h,n)} = exp {—/ )\i,uv(li,o)dv} , for s > t.
t

In this case, for ¢t < v < 7, we have 6;(v) =0 and dA(v) = 0, but for v =7,
we have

0( )_ 1, ifr=m, = dA(T):_Pi(Thi)
=N o0, ifr=n = dA(r) = 0.
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We now compute the intrinsic value as follows:

V(t,(h,n))

=K [/ e TETAA(s) | Z(t) = (hi,n)] +E [e*’"“*t)x/(f, Z(1)) | Z(t) = (hi, n)}
t

— ZE [ —r(Thi— (Thz))]l{q—l>rhz}m{q—h]>7—h“vj¢z} ’ Z( ) (hi,n)]
€L
+O+ZE[ OOV (Ts, Z(100)) L sty szt | Z(E) = (hi,n)]
i€L

+E [e—r(’rl—t)v(,rl’ Z(Tl))]l{n<7'hi,Vi} | Z(t) = (hla n)}
= ZE |:67T(Thi7t) (V(Thi7 (h/L? 0)) - PZ(Thl)) ]]‘{T1>Thi}ﬂ{Thj>TM,Vj7£i} | Z(t) = (hZ, n):|
i€
+E [e*’"(ﬂ*UV(n, (L) ar iy | 2(8) = (hz’,n)}
o Z/ e e s, (hi, 0)) — P;(s)) P{m > 8, Thj > 5,7] # ’L'}fTM(S)dS

i€

+/ eV (s, (1,n))P{Thi > 5,Vi} fr, (s)ds

t

Because we know the full intensity measure, we have that the densities are

fr(s) = yaexp {—va(s — t)} and fr,.(s) = Aips(l3, 0)exp {— fts iy (12, o)dv}.
Since the probabilities in the integrals are

P{m > s,mj > s,Vj # i} = exp {/ (’Ydi + E )\j,uv(lj,o)> dv}
t =
{I€T:j#i}

P{Tm>sVz}—exp{ /Z)‘“u” lzod}

€L
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then

V(t,(h,n))

= Z/ - s, (hi, 0)) — Pi(s)) exp {/S (’Vdﬁ > Nn(l, 0)) dv}
el k (jET:j#i}

X )\ius(li,o)exp{—/ )\iuv(li,o)dv}ds
t
—I—/ eV (s, (1, n))exp{ / Z)‘Z“” (I o)dv}'yde vai(s=t) g

€L
= Z/ , (hi,0)) — Pi(s)) \ips(li, 0)exp {— /5 (r + vai + Z)\my(li,o)> dv} ds
i€ t i€
+ V (s, (I,n))vaiex {— ) (7“ + Yai + i U(li,o)) dv} ds
/t Yaiexp /t Ya Z; p

Case z = (hi,o0): The only jump possible is towards (li,0) with a time
T = 7, where 7, — t ~ £(74;). In this case, for ¢t < v < 7, we have ;(v) =1
and dA(v) = dp;dv, so

V(t, (hi, o)) = E [ /t Y00 dA®) | Z(t) = (hi,o)]

+E [0V (n, Z(m)) | Z(t) = (hi )]

/ ( / e_r(”_t)éhidv> £ (s)ds + / TV (s, (1, 0)) £ (5)ds
t t t
/ (/ B_T(”_t)5hidv> Ydiexp {—74i(s —t)} ds

t t

b [V 1) s (s — )} s
t

= / </ er(vt)&n'dv) Yaiexp {—vai(s — t)} ds
t t

+ /too V (s, (li,0))yaiexp {—(vai + 7)(s — t)} ds

Case z = (li,0): The next jump will be towards (I,n) or (hi,o), for some
i € Z. Thus, we have 7 = min{r, 7,;} the time until the next jump, where
Thi —t ~ E(Yui), but 77 has a jump intensity A;u:(h,n) and the following
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probability distribution (see Lemma 1 of Sznitman [10]):

P > 5| Z(t) = (Ii,0)} = exp {— /t )\Z-,uv(h,n)dv} Cfors >t

In this case, for t < v < 7, we have 6;(v) = 1 and dA(v) = (dp; — d4;)dv, but
for v = 7, we have

0i(r) = 1, ifr=m
T = 0, ifr=7n = dA(r)=P(n).

We now compute the intrinsic value as follows:
Ve, (i) =2 | [Te e 0aa0) | 20) = (hm)
L/t

+E [e_r(T_t)V(T, Z(r) | Z(t) = (h,n)}

=E| /t e (@G — dai)dv + (¢ OP(R)) Ly | Z(8) = (0 0)]
+ B [0V (11, Z (i) Ly amy | Z(2) = (1 0)]
+E [e*“n*t)vm,Z(n))n{n%} | Z(t) = (zz',o)}
=K [ /t ' e (8 — 0gi)dv | Z(t) = (u,@]
+E [e—“w—ﬂV(Thi, (i, ) Lis,,<my | 2(t) = (1, o)]
+E [0 (Vi (10) + Pim) Lran | Z(0) = (1, 0)]
_ /t b < /t e (5, — 5di)dv) Fo(s)ds + /t TV (s, (i 0))P{m > s}y, (5)ds
[T W ) + P Pl > s} (5)ds
and thus, by knowing the density f,(s) = fuin(n.r,}(5), we have
V(t, (I, 0))
= /t h ( /t ero-) (Oni — 6di)dv) (Vui + Nipts(hyn)) exp { /t ) (Vui + Nipo(hy 1)) dv} ds

n /too V (s, (hi, 0) ) Yuiexp {— /ts (Yui + 7+ Nipw (b, m)) dv} ds

N /too (V(s, (1,n)) + Pi(s)) Aifss(h, n)exp {— /ts (Yui + 7+ Nipiw (B, n)) dv} ds
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A.1.2. Intrinsic values for the partially segmented markets. For the seg-
mented markets, we have:
Case z = (I,n): The next jump will be towards (hi,n) for any i € Z. Thus,
we have 7 = min{7y; : i € Z}, the time until the next jump to the state
(hi,n), where 7; — t ~ £(7u;) independently. Then, we have 0;(v) = 0 and
dA(v) =0, Vt <wv < 7, and thus

V(tv (l’ n)) =

0+E[ "=V (7, Z(7)) | Z(t) = (I,n)

>E [e-’““hi-”vm, (B W)L 5wy | 2(8) = (1)
1€

Z/ o s, (hi,n))P{my; > 5,¥j # i} fr,,(s)ds

€L

Z/ —r( s, (hi,n))exp { — Z Fuj(s =) ¢ frp,(s)ds

i€l (jeTj#i}

> / T s,(hi,n))expq — Y Fuj(s —t) p Fue ds
i€z {jeTj#i)}

Z/ , (hi,m)) %z‘eXp{— (7”—1—2%”) s—t}ds

€L el

Case z = (hi,n): The next jump will be towards (I,n) or (hi,o), for some
i € Z. Thus, we have 7 = min{7, 7}, the time until the next jump, where
71—t ~ E(F4i) but Tp; has a jump intensity \;u.(li,0) with the following
probability distribution (see Lemma 1 of Sznitman [10]):

P{rn; > s|Z(t) = (hi,n)} = exp {—/ )\iuv(li,o)dv} , for s > t.
t

In this case, for ¢t < v < 7, we have 6;(v) = 0 and dA(v) = 0, but for v =7,

we have

0i(r) = 1, ifr=m; = dA(T)=—P(mhi)
=0, ifr=n = dA(T) =
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We now compute the intrinsic value as follows:
V(t, (hi,n))
) [/tfe re-Oq A | Z(t) = (hi,n)] +E [e*’“(T*tW(T?Z(T)) | Z(t) = (hz’,n)}
=B | (< (i) L) | Z(8) = (R, )|
B [ OV (74, Z(0) Ly | Z(8) = (hi,m)
FE [V (m, Z(r)) (e | Z(8) = (hi )]
=B (&0 (V (1, (hi, 0)) = P(i)) Lromy | Z(8) = (i )]
+E [V, (1) L ey | Z() = (hin)]
= [T Vs, (b))~ PP > 5} (5)ds
- /t h eIV (s, (1,n))P{i > s} fr, (5)ds

- / TN (V (s, (hiy0) — Pi(s)) e 6D £, (s)ds
t

+/ e "GV (s, ( exp{ / it (Ui, 0 d“} fr(s)ds
' t

= / e (V (s, (hz',o))—a«(s))e%(s”Ams(lmexp{— / Amvu@yo)dv}ds
t t

+/ eV (s, ( exp{ / ity (1, 0 dv}fyde Fai(s=1) 4 g
t t

and thus

V(t,(hi,n)) =
/:0 (V (s, (hi,0)) — Pi(s)) Aips(li, 0)exp {— /ts (Fai + 7+ Xipo (13, 0)) dv} ds
+ /too V(s, (I,n))yaiexp {_ /ts (Yai + 1+ Xipo(li, 0)) dv} ds

Case z = (hi,o0): In this case, the intrinsic value calculation details are
identical to the case z = (hi,0) in the partially segmented market.

Case z = (li,0): The next jump will be towards (I,n) or (hi,o). Thus, we
have 7 = min{7, 75,; } the time until the next jump, where 7p,;—t ~ £(y4i) but
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7; has a jump intensity A;u.(hi, n) and the following probability distribution
(see Lemma 1 of Sznitman [10]):

P{r; > s|Z(t) = (li,0)} = exp {—/ /\i,uv(hi,n)dv} , for s > t.
t

In this case, for t < v < 7, we have 6;(v) = 1 and dA(v) = (p; — d4;)dv, but
for v = 7, we have

0i(r) = 1, ifr=m
=0, ifr=n = dA(1) = Pi(7m).

The remaining intrinsic value calculation details are very similar to the case
z = (li,0) in the partially segmented market.
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A.2. ODE’s for V (i, z).

A.2.1. ODE’s for V(t,z) for the non-segmented markets. For the non-
segmented markets, we have:
Case z = (I,n): In this case, m = 1 and we have

g1((L,n);t,8) = V(s, (hyn))yee” OutE=D

Since & g1((l,n);t,s) = (yu +r)g1((l,n);t, 5), then

Ve, (0m) = =or(Lnit) + [ Ou (L )it s
=Vl )t (u ) [ ()it s
By (36), we then have
V(t, () = =Vt (b)) + (v + 1)V ()
Case z = (h,n): In this case, m = 2 and we have

g1((h,n);t,s) = (V(s, (hi, 0)) — Fi(s))

X Z Aipes(li, 0)exp {— /tS <7d +r+ Z ity (12, 0)) dv}

€T €L
92((ha n); t, S) = V(37 (la n))’YdeXp {_ / <7d +r+ Z )‘iUv(li7 0)) d’U}
t i€l
Thus,
0 .
agl((}% n)v t? S) = <7d +r+ Z Ail’l’t(ll7 0)) gl(<h7 TL), tv S)
€T

gtm((h, n)t,s) = (%z Fr+ > il 0)) 92((h,n);t, s)

i€
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and then
V( (h n gl((han)7t7t )Stvt)
+/Oo <7d+r+2&m (ld 0)) g91((h,n);t, s)ds
t €L
+ /Oo <'Yd+?”+ > Xl 0)) g2((h,n);t, s)ds
t 1€T
Z (t, (hi,0)) — Pi(t)) Nt (13, 0) — vaV (¢, (I,n))
1€L
+ +r+ > Aipe(li o)) oo[ ((h,n);t,s) + g2((h,n);t, s)|ds
(’Vd ; it ( </t 91 92 )
By (37),

V(t,(h,n)) = = (V(t, (hi, 0)) = Pi(t)) Aipe(li, 0)

i€

—vV(t,(I,n)) + (’Yd +r+ Z g (1, o)> V(t, (h,n)

1€T

Case z = (hi,0): In this case, m = 2 and we have

g1((hi,0);t,s) = </ €_r(v_t)5hidv> Yaiexp {—7ai(s — t)}
t

92((hi7 0); t, S) = V(87 (liv 0))’YdieXp {_(’Ydi + T)(S - t)}
Thus,

0
Yai(s— t r(v—t) Yai(s—t) —r(v—t)
i ((01,035t,5) =30 (e 0) ([ baere 0 ) a0 8 g emr 0
= Yaig1((hi, 0);t, 5) + ygie 45 [—5h¢6_T(t_t)+/ 5hﬂ“€_r(”_t)dv}
t

= 7aig1((hi, 0); £, 8) — yaie 5 + ryge 140 / Snie” " do
t

= 7aig1((hi, 0);t, 5) — yaie 46y + rgy ((hi, 0);t, 5)
A SR

£-02((hi,0): £, 5) = (s + 1) (B 0); 5
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and then
V(t, (hi,0)) = —g1((hi, 0);t,t) — ga((hi, 0); t, ) + /:O [(m +7)g1((hi, 0);t, 5)
- ")/die’Ydi(St)(Shi] ds + /t " (i + 7)ga((hi, 0): ¢, 5)ds
0 — gV (t (1, 0)) + (vai +7) /too[gl((hi, 0):t,5) + ga((hi, 0): 1, 5)]ds
- /too ~aie 1D gy ds
= =4V (¢, (li,0)) + (yai + 1) /too[gl((hia 0);t,s) + g2((hi, 0);t, s)|ds — dp;

By (38),

V(t, (hi,o0)) = (vg + 1) V(t, (hi,0)) — vaV (¢, (Ii,0)) — Op;

Case z = (li,0): In this case, m = 3 and we have
g1((li, 0);t,8) = (/ e "D (G — 6d¢)dv> (Yui + Aipes(h, n)) exp {—/ (Yui + Aipto (hy 1)) dv}
t t
g2((li,0);t,s) = V (s, (hi, 0))yuiexp {—/ (Yui + 7+ Ao (hyn)) dv}
t

93((13,0);, ) = (V(s, (I, n)) + Pi(s)) Augas , n)exp {— / (i 7 Aigin () dv}
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Thus,
0 . .
D g1((1,0:.5) = (-4 Mgl ) g1 (1, 0):1,5)+
+ (ruiis (1)) exp {— / (s + Aittn (s ) dv}
t

X | =i — dai)e "0 / (Oni — 5di)7'€_r(v_t)dv]
t
- (’Yul + )‘l/’Lt(h) T'L)) gl((llla O)a ta S)
- ((5hi - 5di) ('Yuz‘ + )\iNS(h> n)) exp {_ / ('7ui + )\iﬂv(ha n)) dv}
t

+ 7 (Yui + Aips(h,n)) exp {— / (Yui + ity (hym)) dv} / (Oni — 5di)6_r(’”—t)dv
¢ ¢
- (IYUZ +r+ )\Z/J*t(ha n)) gl((hv O); t? S)
6= ) O+ et exo { = [ s+ Ao o
¢

agg((li, 0);t,s) = (Yui + 7+ Nipe(h,m)) g2((li,0);, s)

§gg((li, 0);t,8) = (Yui + 7+ Nipe(hy,m)) g3((li,0);t, s)
and then
V(tv (liv O)) = —gl((li,o);t,t) - 92((“7 0); t,t) - 93((“7 O);t7t)

+Am[hm+r+MmMm»mW@®m$
—oni—5ﬁ>«mf+Aﬁ%Uun»exp{—llsomi+Aﬁmaun»dv}]ds
+Lwﬁm+r+&meﬁm«M®ﬁﬁms

+jwmm+r+MMMm»%«mmeMs
— 0= 3V (t, (i, 0)) — Aae(hy m)(V (2, (1,m)) + Bi(8))
-u%Hw+Mmmm»[[mwmma@+mwmmu@+%wwmuﬂw

— (Oni — 0as) /too (Yui + Nipts(hy 1)) exp {/t

S

(Vui + Aipto (R, m)) dv} ds
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By (39),

V(ta (l’L, O)) = ('Vui +7r+ Ai/fbt(hv n)) V(t7 (lZ7 0)) - ’Vuiv(tv (hZ, 0))
= Aipi(h,n)(V (L, (1,n)) + Pi(t)) — (0ni — 6ai)

A.2.2. ODE’s for V(t,z) for the partially segmented markets. For the
segmented markets, we have:
Case z = (I,n): In this case, m = 1 and we have

= "V (s, (hi,n) ’ym-exp{— (r—i—Z’yuZ) s—t}

€L 1€L

Since % g1((Ln);t,s) = (r+ X ;e7 Yui) 91((1,n); t, s), then

V(t,(I,n)) = —gi1((Il,n); t,t) + /too (7’ + Z%Z> g1((l,n);t, s)ds

€T
:—ZV (hi,n))Yui + <T+Z’}’m> / ,n);t,s)ds
1€l i€l

By (41), we then have

Z V h’L 7’L 'Yui + <7" + Ziuz) V(tv (l? TL))

i€ 1€l

Case z = (hi,n): In this case, m = 2 and we have

g1((hi,n);t,s) = (V (s, (hi, 0)) — Pi(s)) Aipss (I, 0)exp {— /ts (Yai + 7+ Xigio (13, 0)) dv}
g2((hi,n);t,s) = V(s, (I,n))Yaiexp {— /tS (Yai + 7+ Nipeo(li,0)) dv}

Thus,

0 . ~ ) ,
o1 ((hin)it, s) = (Gai + 1+ Xipe (1, 0)) g1 ((hé, )3 . 5)

B . N . .
agz((h% n);it,s) = (Yai + 1+ Aipe(1i, 0)) g2 ((hi, n);t, s)
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and then
V(t, (hi,n)) = —gi((hi,n);t,t) — g2((hi, n); t, 1)

+ / (Yai + 7+ Aipe(li, 0)) g1((hi, n);t, s)ds

t

+ / (Yai + 7+ Aipe(li, 0)) g2((hi, n);t, s)ds
t
— (V(¢, (hi,0)) — Pi(t)) Xipue(li, 0) = V'(t, (I, n))Fai
G+ o) ([l (i .9 + (bt st ] )
t

By (41),

V(t, (hi,n)) = — (V(t, (hi,0)) — P;(t)) Xipu (1, 0) — V (£, (1,n))Vai
+ (Fai + 7+ Aipe(li, 0)) V (¢, (hi, n)

Case z = (hi,o0): In this case, the calculation details are identical to the
case z = (hi,0) in the partially segmented market.

Case z = (li,0): In this case, m = 3 and we have

g1((li,0);t,5) = </ts e D (6 — 5dz’)dv) (Yui + Aipis(hi, n)) exp {— /ts (Vui + Aipto(hi, m)) d”}
92((li, 0);t,8) = V (s, (hi, 0))yuiexp {— /ts (Yui + 7+ Aipto(hi, n)) dv}

93((li, 0);t,5) = (V (s, (I,n)) + Pi(s)) Aipss (hi, n)exp {— /ts (Yui + 7+ Aipo(hi, n)) dv}

The remaining calculation details are very similar to the case z = (li,0) in
the partially segmented market.
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0

where v £ 7y + 74, Wy

BELANGE ET AL.

APPENDIX B: DETAILS OF THE M MATRICES

B.1. The non-segmented markets. The (2K + 1) x (2K + 1) coef-
ficients matrix in this case is defined as follows:

—Yu 0 0 0
r+y —M; —M> — My
Y +va1 T+ ¥aq M My
—Yd + Yd2 My r+ WYy ... My
—vd+vixk M Mo R L 7] ¢
Yu — Yul - 0 0
Yu — Vu2 0 Wy .. 0

Aip(li, 0)(1 = q).

B.2. The partially segmented markets.

0 0
M, M,
VU — M
—M; Uy
—M — M,

r—+ W, 0
0 r—+ \I/uz
0 0

2 vy + Nip(hyn)g, Wai £ v + M; and M;

(On next page)




The (3K 4 1) x (3K + 1) coefficients matrix in this case is defined as follows:

T = —Fu2 —Yuk 0 0 0 0 0 0

0 ’I“—l—ﬁl %ug auK —M; 0 0 My 0 0

0 Yul r =+ 7o Yuk 0 — M, 0 0 Mo 0

0 Yul Yu2 r4+ 9K 0 0 — My 0 0 My

0 —Ya1 + a1 0 0 r 4 Ug 0 0 —U 0 0
M=1]0 0 —Yd2 + Va2 - 0 0 r+ Wy . 0 0 Vg .. 0

0 0 0 o TVdK VK 0 0 B ) 0 0 R e

0 ﬁul — VYul iu? iuK -1 0 0 r+ V.1 0 0

0 ?ul ﬁug — Yu2 7uK 0 —W.9 0 0 r+ Wy .. 0

0 §u1 :y'ug ﬁuK — YuK 0 0 W,k 0 0 .. T4+ VuK

where 3; £ Fui + Yai» Yui = Yui + Nipt(hi, n)q, Wg; = va; + M; and M; = X;p(li, 0)(1 — q).

SLHSSV TVHHAHUS HLIM STHAOW LAMYVIN DLO

Ii%
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