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Avant-propos pour les cahiers de recherche du GReFA
Dans un cahier précédent, intitulé "Extended Kac Walks and an Application

in Econophysics", nous avons généralisé l�étude de la dynamique des marchés

OTC comme grands ensembles interactifs où les interactions se produisent à

m agents avec nombre d�agents m � 2 quelconque. Poursuivant cette direc-

tion, nous généralisons, dans ce cahier, les résultats d�existence et d�unicité

d�une loi stable pour un modèle d�échange d�information binaire de Du¢ e et al

(Du¢ e,D., Malamud, S. and Manso, G., "Information percolation with equilib-

rium search dynamics", Econometrica, vol. 77, no. 5, 1513-1574, (2009).) au

cas d�échange multipartite. Nous montrons aussi l�utilité de notre résultat sur

l�existence d�une solution globale du problème de Cauchy pour une grande classe

d�équations di¤érentielles non-linéaires, en obtenant la stabilité exponentielle de

cas particuliers de systèmes d�un nombre �ni d�équations.

Abstract
We obtain the global solution of the Cauchy problem of a large class of non-

linear di¤erential equations. This enables us to deduce the exponential stability

of particular systems with a �nite number of equations. We moreover extend

some results on a binary information exchange model to the case where the

exchanges involve m agents, for m � 2:

AMS classi�cations: 34A34, 91B26, 60G55.

(�) The �rst author would like to thank the Université de Sherbrooke and

its Faculté d�administration for a startup grant.
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1 Introduction

In [2] Du¢ e-Malamud-Manso (2009), the authors have obtained interesting re-

sults for binary information exchange models in large interacting sets where

agents have an autonomous movement which makes them quit the market in

order to be replaced by a new agent whose degree of precision follows a given

probability law. The evolution of the agent�s law in such a set can be approx-

imated by the solution of a quadratic system which, in the binary case with

perfect information transmission, can be written

d�t(n)

dt
= �(�(n)� �t(n)) +

n�1X
l=1

h(l; n� l)�t(l)�t(n� l)�
X
l�1

h(n; l)�t(n)�t(l)

where � is a given probability law.

It is important to note that the last term is linear in �t(l) since it is the use

of that fact which enables [2] Du¢ e et al to obtain the stability of such systems

when h(n;m) = c(n)c(m); for a positive function c which is constant above a

certain n; high enough, and such that � is bigger than c times this constant.

There are many ways to generalize this system of equations. The meetings

can involve more than 2 agents, like in private auctions, and the information

transmission might be imperfect. The transmission kernel which can be written

in the case of perfect transmission with m agents

Qpf (n1; n2; :::; nm; l1; l2; :::; lm)

= �n1+n2+:::+nm(l1)�n1+n2+:::+nm(l2) � � � �n1+n2+:::+nm(lm)

is then replaced by an arbitrary symmetric probability kernel K:

We will show, in section 2, the existence of a global solution of the following
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general systems:

d�t(n)

dt
= �(�(n)��t(n))+

X
n1;:::;nm

�t(n1)����t(nm)h(n1; :::; nm)(K(n1; :::; nm;n)�1n)

where K(n1; :::; nm;n) =
X

i2;:::;im

K(n1; :::; nm;n; i2; :::; im) when the intensity

function h is bounded. In the particular case of perfect exchange for m agents

the system can be written

d�t(n)

dt
= �(�(n)� �t(n)) +

X
n1+:::+nm=n

�t(n1) � � � �t(nm)h(n1; :::; nm)

�
X

n2;:::;nm

�t(n) � � � �t(nm)h(n; n2; :::; nm)

Our result allows us to state the existence of a global solution of a large

number of non-linear di¤erential systems of a �nite number of equations like for

example

dx

dt
= 1� x� xm

dy

dt
= �y + xm

since this system can be obtained in our framework when � = 1; �(1) = 1;

h(1; 1; :::; 1) = 1 and h is equal to 0 elsewhere:

Note that for m = 2, the solution of dxdt = 1 � x � x2 can be obtained by

separation of variables, see [1] Bahk-Dyakevich-Johnson (2008) for a general

study of the Riccati equation.

We could think of using this technique to solve the equation in general but

the analysis of [1] would involve a factorization of the polynomial 1 � x � xm

for a general m which seems di¢ cult. On the other hand, the existence of a

solution for all times t cannot be obtained from the classical theory of ODE�s
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which is primarily concerned with the existence of local solutions.

There are obviously many other examples involving symmetric functions

h: For example, if we let a � 0; b � 0; h(1; 1; :::; 1) = a; h(m; 1; 1; :::; 1) =

h(1;m; 1; :::; 1) = ::: = h(1; 1; :::; 1;m) = b with all other values being 0 we

obtain the following system:

dx

dt
= 1� x� axm � (m� 1)bxm�1y

dy

dt
= �y + axm � bxm�1y

dz

dt
= �z +mbxm�1y

(which reduces to the previous sytem when a = 1 and b = 0): We will study

this system in section 3.

But we will �rst demonstrate, in section 2, the existence of the global solution

of the Cauchy problem under the only hypothesis that h is positive and bounded.

In section 3, we will show, with a few examples of systems with a �nite number

of equations, how we can obtain a general solution. We will moreover obtain

stable points for these systems and we will show their asymptotic stability at an

exponential rate. In section 4, we will return to the particular case of [2] Du¢ e

et al with meetings involving m agents and we will demonstrate the existence

of invariant laws.

2 Existence of global solutions

The general systems we will consider in this section can be written as follows:

d�t(n)

dt
= �(�(n)��t(n))+

X
n1;:::;nm

�t(n1)����t(nm)h(n1; :::; nm)(K(n1; :::; nm;n)�1n)
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where K(n1; :::; nm;n) =
X

i2;:::;im

K(n1; :::; nm;n; i2; :::; im) when the intensity

function h is bounded. Let h� = suph(n1; :::; nm): Then

d�t(n)

dt
= �(�(n)� �t(n))+

+h�

( X
n1;:::;nm

�t(n1) � � � �t(nm)(
h(n1; :::; nm)

h�
(K(n1; :::; nm;n)� 1n)

+

�
1� h(n1; :::; nm)

h�

�
(I(n1; :::; nm;n)� 1n)

�

where I(n1; :::; nm;n) =

8><>: 1 if n1 = n

0 otherwise
:

Let

J(n1; :::; nm;n) =
h(n1; :::; nm)

h�
(K(n1; :::; nm;n)� 1n)

+

�
1� h(n1; :::; nm)

h�

�
(I(n1; :::; nm;n)� 1n))

These systems can be rewritten:

d�t(n)

dt
= (� + h�)

�

� + h�
(�(n)� �t(n))

+(� + h�)
h�

� + h�

( X
n1;:::;nm

�t(n1) � � � �t(nm)J(n1; :::; nm;n)
)

If we de�ne the kernel K�(n1; :::; nm; l1; :::; lm) =
P

1
m�(li) and if we do a time

change (so that � + h� = 1) then the interaction equation can be written

d�t(n)

dt
=

X
n1;:::;nm

�t(n1) � � � �t(nm)(Q(n1; :::; nm)� 1n)

where Q is a symmetric probability kernel. Such an equation, in turn, is a
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particular case of the following equation

d�t
dt

= ��mt � �t

where m is an integer greater or equal to 2; (E; E) is a measurable space; Q is

a symmetric probability kernel on

(Em; E
m);Q(x1; x2; :::; xm;C) = Q(x1; x2; :::; xm;C � Em�1) for C 2 E ;

and ��m(C) ,
Z
Rm

�(dx1)�(dx2) � � � �(dxm)Q(x1; x2; :::; xm;C): Let An be the

set of all trees with n nodes, each node producing m branches. If An 2 An, let

��mAn denote the law obtained by iteration of ��m when we place the law � on

each leaf of An:

Theorem 1 The convex combination,

�t =
X
n�0

pn(t)
1

#m(n)

X
An2An

��mAn ;

is a solution of the Cauchy problem d�t
dt = ��mt � �t;�0 = �:Where #m(n)

=
n�1Y
k=1

((m � 1)k + 1) is the number of trees with n nodes, taking into account

their branching orders and pt(n) =
#m(n)

(m�1)nn!e
�t(1�e�(m�1)t)n is the probability

of having n branchings up to time t:

Proof. We di¤erentiate �t term by term to obtain:

��t + e�mt
X
n�1

n(1� e�(m�1)t)n�1 1

(m� 1)n�1(n� 1)!
X

An2An

��mAn

Thus we need to show that:

��mt (C) = e�mt
X
n�0

n(1�e�(m�1)t)n�1 1

(m� 1)n�1n!
X

An+12An+1

��mAn+1(C) (�)
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But the LHS is equal by de�nition to

Z
Rm

0@X
i1�0

e�t(1� e�(m�1)t)i1 1

(m� 1)i1i1!
X

Ai1
2Ai1

��mAi1 (dx1)

1A :::
:::

0@X
im�0

e�t(1� e�(m�1)t)im 1

(m� 1)imim!
X

Aim2Aim

��mAim (dxm)

1A :::
:::Q(x1; :::; xm;C � Em�1)

which is equal to

Z
Rm

e�mt

8<:X
n�0

(1� e�(m�1)t)n
X

i1+:::+im=n

1

(m� 1)ni1!:::im!
:::

0@ X
Ai1

2Ai1

��mAi1 (dx1)

1A � � �
0@ X
Aim2Aim

��mAim (dxm)

1A9=;Q(x1; :::; xm;C � Em�1)
which in turn is equal to

Z
Rm

e�mt

0@X
n�0

(1� e�(m�1)t)n 1

(m� 1)nn!F (i1; :::; im; n; �;Ai1 ; ::::; Aim;Q;C)

1A
where

F (i1; :::; im; n; �;Ai1 ; ::::; Aim;Q;C) = :::

X
i1+:::+im=n

�
n

i1

��
n� i1
i2

�
� � �
�
im�1 + im
im�1

�0@ X
Ai12Ai1

��mAi1 (dx1)

1A � � �
� � �

0@ X
Aim2Aim

��mAim (dxm)

1AQ(x1; :::; xm;C � Em�1)
And this last expression is a decomposition of the trees An+1 appearing in the

RHS of (�) in m subtrees after the �rst node (taking the branching order into
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account). The two expressions are therefore equal and this proves the result.

This shows that the particular systems we study here all have a global so-

lution. We will show in the next section that it is advantageous to know that

fact when we analyze the stability of systems of di¤erential equations.

3 Systems with a �nite number of equations

3.1 Existence of an invariant law

We will show directly that the following system has an invariant solution:

dx

dt
= �(�(1)� x)� axm � (m� 1)bxm�1y

dy

dt
= �(�(m)� y) + axm � bxm�1y

dz

dt
= �(�(2m� 1)� z) +mbxm�1y

with �(1) + �(m) + �(2m� 1) = 1: Evidently, such a solution must satisfy the

following identities:

0 = �(�(1)� x)� axm � (m� 1)bxm�1y

0 = �(�(m)� y) + axm � bxm�1y

Inspired by [2], we proceed as follows. For C � 0; let

x(C) =
��(1)

� + C
(1)

y(C) =
��(m) + ax(C)m

� + bx(C)m�1
(2)

Note that C �
�
ax(C)m�1 + (m� 1)bx(C)m�2y(C

�
) is negative at C = 0

and since x(C) is a decreasing function of C the expression is positive for C
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high enough: Hence there is a C� � 0 such that

C�x(C�) =
�
ax(C�)m + (m� 1)bx(C�)m�1y(C�

�
):

Substituting this value in (1) and (2) gives us that (x(C�); y(C�)) satis�es the

identities. If we furthermore let

z(C�) =
��(2m� 1) +mbx(C�)m�1y(C�)

�

then (x(C�); y(C�); z(C�)) is an invariant solution and

�(x(C�) + y(C�) + z(C�)) = �(�(1) + �(m) + �(2m� 1))

�C�x(C�) +
�
ax(C�)m + (m� 1)bx(C�)m�1y(C�

�
)

= �(�(1) + �(m) + �(2m� 1))

which shows that the solution is a probability law.

3.2 Exponential asymptotic stability

It is well-known that a system of di¤erential equations is exponentially stable

when the invariant solution of the vector

(�(�(1)� x)� axm � (m� 1)bxm�1y; �(�(m)� y) + axm � bxm�1y)

has a Jacobian matrix whose eigenvalues have strictly negative real parts. We

will show that this is indeed the case for all x; y 2 [0; 1]: If

264u z

w v

375 denote the
Jacobian matrix of the vector, then : u = �� � maxm�1 � (m � 1)2bxm�2y;

z = �(m � 1)bxm�1;w = maxm�1 � (m � 1)bxm�2y; v = �� � bxm�1: And

direct computations show that its eigenvalues have the form
��
p
�2��
2 where �
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is strictly positive and � is strictly negative.

4 Extension of the DMM model to the case of

interactions with m agents.

Recall that the evolution equation, denoted (*), in the model with perfect in-

formation transmission but when interactions involve m agents, is written:

d�t(n)

dt
= �(�(n)� �t(n))

+
X

n1+:::+nm=n

�t(n1) � � � �t(nm)h(n1; :::; nm)

�
X

n2;:::;nm

�t(n) � � � �t(nm)h(n; n2; :::; nm)

We will obtain an invariant law in the case where h(n1; :::; nm) = c(n1) � � �

c(nm) with c bounded. Let d = maxfc(n)g: In order to avoid technicalities we

will suppose that the support of � is f1 + k(m� 1)gk�0:

Proposition 2 For d � 0, let

�1(d) =
��(1)

� + c(1)dm�1

and de�ne recursively

�1+k(m�1)(d)

=

��(1 + k(m� 1)) +
X

n1+:::+nm=1+k(m�1)

c(n1) � � � c(nm)�n1(d) � � � �nm(d)

� + c(1 + k(m� 1))dm�1
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The equation

d =
X

1+k(m�1)�1

c(1 + k(m� 1))�1+k(m�1)(d)

admits a unique solution d�: Moreover the law �(d�) is the unique invariant law

of the system (*).

Proof. In order to simplify the notations, let ck = c(1 + k(m� 1));�k = �(1 +

k(m�1)) and �k(d) = �1+k(m�1)(d): Since ��0(d) = ��0�c0dm�1�0(d) � ��0,

then 0 � �0(d) � 1: Similarly,

�(�0(d) + �1(d)) = �(�0 + �1) + c
m
0 �0(d)

m � dm�1(c0�0(d) + c1�1(d))

If d � d then

�(�0(d) + �1(d)) � � + d
m�1

c0�0(d)� dm�1c0�0(d) � �

Note that 1 + k1(m � 1) + 1 + k2(m � 1) + ::: + 1 + km(m � 1) = 1 +0@ mX
j=1

ki + 1

1A (m� 1): Suppose now that 0 � kX
j=0

�j(d) � 1: Then

�

0@k+1X
j=0

�j(d)

1A = �

0@k+1X
j=0

�j(d)

1A
+
k+1X
j=0

X
k1+:::+km+1=j

ck1 � � � ckm�k1(d) � � � �km(d)

�
k+1X
j=0

cj�j(d)d
m�1
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But

kX
j=0

X
k1+:::+km=j

ck1 � � � ckm�k1(d) � � � �km(d)

�
kX

k1;:::;km�1=0

ck1 � � � ckm�1�k1(d) � � � �km�1(d)

0@ kX
j=0

cj�j(d)

1A
�

kX
k1;:::;km�1=0

ck1 � � � ckm�1�k1(d) � � � �km�1(d)d

�
kX

k1;:::;km�2=0

ck1 � � � ckm�1�k1(d) � � � �km�2(d)d
2::::::

�
kX

k1=0

ck1�k1(d)d
m�1

Hence 0 �
1X
j=0

�j(d) � 1: De�ne f(d) =
1X
k=0

ck�k(d): Since f(d) � d for

d � d and f(0) � 0 there exists d� such that f(d�) = d�: Now

d�k(d
�)

dt
= �(�k � �k(d�))

+
X

k1+:::+km=k�1
�k1(d

�) � � � �km(d
�)ck1 � � � ckm

�
X

k2;:::;km

�k(d
�)�k2(d

�) � � � �km(d
�)ckck2 � � � ckm

By de�nition of d�

X
k2;:::;km

�k(d
�)�k2(d

�) � � � �km(d
�)ckck2 � � � ckm = ck�k(d�) (d�)

m�1

And by the de�nition of �k, we get that
d�k(d

�)
dt = 0: Note moreover that

1X
k=0

X
k2;:::;km

�k(d
�)�k2(d

�) � � � �km(d
�)ckck2 � � � ckm =

1X
k=0

ck�k(d
�) (d�)

m�1

= (d�)
m
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and similarly

1X
k=0

X
k1+:::+km=k�1

�k1(d
�) � � � �km(d

�)ck1 � � � ckm = (d�)
m

So f�kg is a probability law and its uniqueness follows from [2] pp. 32-36.

5 Annex

There is an alternative approach, to the one presented in the �rst two sections,

to obtain the global solution of the evolution equation of a large interacting set.

It can be brie�y described as follows.

Let the process
�
ZNi (t); :::; Z

N
N (t) : 0 � t � T

�
N�2 be de�ned by an interact-

ing set of N � m particles whose interactions follow a Poisson process with

intensity N
m : Each group of m particles has a probability of

�
N
m

��1
of being

involved in the interaction. The result of the interaction is given by a sym-

metric probability kernel, Q on (Em; E
m) (the m-fold product of a measur-

able space (E; E)). This description leads to the homogeneous Markov process�
ZNi (t); :::; Z

N
N (t) : 0 � t � T

�
N�2 .

The global solution of the evolution equation is then obtained as the limit of

the sequence,

 
�Nt =

1
N

NX
i=1

�ZNi (t) : 0 � t � T
!
N�2

; of the empirical measures

process along well-chosen test functions. More speci�cally, we take the limit of

the sequences

 
< �Nt ; ' >=

1
N

NX
i=1

'(ZNi (t)) : 0 � t � T
!
N�2

when ' belongs

to a countable dense set of bounded and continuous functions. As usual, the

problem is solved in two steps: �rst by establishing the relative compactness of

the sequence and second by showing that the set has a unique limit point. In
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order to show the relative compactness, it su¢ ces to show that

E
h�
< �Nt ; ' > � < �Nr ; ' >

�2 �
< �Nr ; ' > � < �Ns ; ' >

�2i � C(t� s)2
for 0 � s � r � t � T: This is obtained using the jumps compensators and

square �eld operator of the process
�
ZNi (t); :::; Z

N
N (t) : 0 � t � T

�
N�2 : Once

this is obtained, there only remains to show that the limit points are the Dirac

delta mass on the solution of the non-linear equation. See [3] Ferland-Giroux

(2008) for the details and proofs.
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