002-11

par

~ Bélanger, Alain

\ Giroux, Gaston

UNIVERSITE DE
SHERBROOKE



Interacting Sets of Investors with Exits

Alain Bélanger™) and Gaston Giroux

(Dated: 6 December 2011)

Avant-propos pour les cahiers de recherche du GReFA

Dans un cahier précédent, intitulé "Extended Kac Walks and an Application
in Econophysics", nous avons généralisé ’étude de la dynamique des marchés
OTC comme grands ensembles interactifs ou les interactions se produisent &
m agents avec nombre d’agents m > 2 quelconque. Poursuivant cette direc-
tion, nous généralisons, dans ce cahier, les résultats d’existence et d’unicité
d’une loi stable pour un modéle d’échange d’information binaire de Duffie et al
(Duffie,D., Malamud, S. and Manso, G., "Information percolation with equilib-
rium search dynamics", Econometrica, vol. 77, no. 5, 1513-1574, (2009).) au
cas d’échange multipartite. Nous montrons aussi l'utilité de notre résultat sur
I’existence d’une solution globale du probléme de Cauchy pour une grande classe
d’équations différentielles non-linéaires, en obtenant la stabilité exponentielle de
cas particuliers de systémes d’un nombre fini d’équations.

Abstract

We obtain the global solution of the Cauchy problem of a large class of non-
linear differential equations. This enables us to deduce the exponential stability
of particular systems with a finite number of equations. We moreover extend
some results on a binary information exchange model to the case where the
exchanges involve m agents, for m > 2.
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1 Introduction

In [2] Duffie-Malamud-Manso (2009), the authors have obtained interesting re-
sults for binary information exchange models in large interacting sets where
agents have an autonomous movement which makes them quit the market in
order to be replaced by a new agent whose degree of precision follows a given
probability law. The evolution of the agent’s law in such a set can be approx-
imated by the solution of a quadratic system which, in the binary case with

perfect information transmission, can be written

d'uctlin) =n(r(n) — pu(n)) + Z_: h(l,n — Dpe(Dpe(n —1) — Z h(n, 1) py () e (1)
=1 1>1

where 7 is a given probability law.

It is important to note that the last term is linear in (1) since it is the use
of that fact which enables [2] Duffie et al to obtain the stability of such systems
when h(n,m) = ¢(n)c(m), for a positive function ¢ which is constant above a
certain n, high enough, and such that n is bigger than c times this constant.
There are many ways to generalize this system of equations. The meetings
can involve more than 2 agents, like in private auctions, and the information
transmission might be imperfect. The transmission kernel which can be written

in the case of perfect transmission with m agents

pr(n17n27 w3 Zl7 l23 cey l’m)

= 5n1+n2+~-+nm (11)5n1+n2+m+nm (12) T 5n1+n2+-v.+nm (lm)

is then replaced by an arbitrary symmetric probability kernel K.

We will show, in section 2, the existence of a global solution of the following



general systems:

dpy(n)

g = )= (n))+ D () () B0, ) (K (0 o i 1) = 1,)
MN1y.sMm
where K(ni,...,nm;n) = Z K(ny,...Nm;n, 2, ..., 4,) when the intensity

i27~~-77;m
function h is bounded. In the particular case of perfect exchange for m agents

the system can be written

du;lin) = n(r(n) — p(n)) + Z 1,(n1) + -+ g (R )RR oery M)

ni+...+nm=n

- Z :U't(n) T Mt(nm)h(anQJ "'7nm)

n2,..;Mm

Our result allows us to state the existence of a global solution of a large

number of non-linear differential systems of a finite number of equations like for

example
dx
_ — 1 —r— x'fﬂ
dt
dy _ m
E = y +x
since this system can be obtained in our framework when n = 1,7(1) = 1,

h(1,1,...,1) =1 and h is equal to 0 elsewhere.

Note that for m = 2, the solution of i—f =1—g— 22

can be obtained by
separation of variables, see [1] Bahk-Dyakevich-Johnson (2008) for a general
study of the Riccati equation.

We could think of using this technique to solve the equation in general but
the analysis of [1] would involve a factorization of the polynomial 1 — 2z — 2™

for a general m which seems difficult. On the other hand, the existence of a

solution for all times ¢ cannot be obtained from the classical theory of ODE’s



which is primarily concerned with the existence of local solutions.

There are obviously many other examples involving symmetric functions
h. For example, if we let a > 0,b > 0,h(1,1,..,1) = a,h(m,1,1,..,1) =
h(1,m,1,..,1) = ... = h(1,1,...,1;m) = b with all other values being 0 we

obtain the following system:

d

d—j = 1—x—ax™—(m—1)bzs™ 1y
d

d—ZtJ = —y+ax™ —bzs™ 1y

d

d—; = —z+mbz™ 1y

(which reduces to the previous sytem when ¢ = 1 and b = 0). We will study
this system in section 3.

But we will first demonstrate, in section 2, the existence of the global solution
of the Cauchy problem under the only hypothesis that h is positive and bounded.
In section 3, we will show, with a few examples of systems with a finite number
of equations, how we can obtain a general solution. We will moreover obtain
stable points for these systems and we will show their asymptotic stability at an
exponential rate. In section 4, we will return to the particular case of [2] Duffie
et al with meetings involving m agents and we will demonstrate the existence

of invariant laws.

2 Existence of global solutions

The general systems we will consider in this section can be written as follows:

) )Y )y ) R 1 )10
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where K(nq,...,nm;n) = E K(ny, ...y im0y g, ..y i) when the intensity
12,.005fm

function h is bounded. Let h* = sup h(n1,...,ny,). Then

dpiy(n)
dt

= n(m(n) = py(n))+

W{ 2 “t<n1>-~-ut<nm><W<

N1 yeeeyMm

N <1 _ h("lh"m)> (T, oo i 1) — 1n)}

K(ny,.ynm;n) — 1)

_ lifny=n
where I(ny,...,nm;n) =
0 otherwise

Let

— G TR i
%(K(nl,...,nm;n)—ln)

h(ni,...,nm -
+ (1 —~ (1h)> (T(n1, oo s 1) — 1))
These systems can be rewritten:

dpy(n)
dt

— (77+h*)7777 (7(n) — e(n))

If we define the kernel Ky (n1,...,np;l1, ..., lm) = Y L7(l;) and if we do a time

change (so that 7 + h* = 1) then the interaction equation can be written

d’u;ij(gn) = Z ﬂt(nl) s ﬂt(nm)(Q(nl, oy ) — 1)

N1, m

where () is a symmetric probability kernel. Such an equation, in turn, is a



particular case of the following equation

dp o
7; =™ My
where m is an integer greater or equal to 2; (E, &) is a measurable space; @ is
a symmetric probability kernel on
(E™,£9™); Q(x1, 2, o, T; C) = Q(x1,T0, ..., Tp; C x E™™1) for C € &;
and p°=(C) £ /,u(dan),u(d@) o u(dzn)Q(z1, T2, ..oy 2 C). Let A, be the

R’V?’L
set of all trees with n nodes, each node producing m branches. If A,, € A,,, let

p°mAn denote the law obtained by iteration of u°» when we place the law p on

each leaf of A,,.

Theorem 1 The convexr combination,

DN B

n>0 An €Ay

dﬂt Om

is a solution of the Cauchy problem ~pt = ™ — pg;pg = p. Where  #,,(n)

n—1
= H((m — 1k + 1) is the number of trees with n nodes, taking into account
k=1

their branching orders and p;(n) = %e t(1—e~(m=DH" js the probability

of having n branchings up to time t.

Proof. We differentiate p, term by term to obtain:

— 1y + e~ mt Zn(l _ e—(m—l)t)n— (
n>1

,Dn L(n —1)! Z’uomn

A €A,

Thus we need to show that:

B () = e Y n(le I ST e (0)  (x)

_ 1n!
n>0 (m 1)" v Ant1€AL 11



But the LHS is equal by definition to

Ze —e~(m= Dt) ( _1,1“ Z pemA i1 (dxq)

g \i120 Ay, €Ay,
. 1
—t —(m—1)t\2 omA;.
Doty e 2w ()
b >0 M Ay, €A,

Q1 ey T C x E™TH)

which is equal to

1
—mt _ _—(m-1)t\n
/6 Z(l (& ) Z (m _ 1)n21'2m'

Rm n>0 i1+...Fim=n
pem A (day) | - E plmAim (day,) Q(21, .., Tp; C x E™H)
A; €Ay, A, €Ai,,

which in turn is equal to

1
—mt _ —(m-=1)t\n . : . .
/e E (1-e ) R 1)nn!F(z1,...,zm,n,,u7A“,....,Alm,Q,C)

Rm n>0

where

F(il, ...,im, n, u, Ai17 ceeey Aim,Q7 C) =

w0 () (5 e

) “ 7 7 T —
i14+...+im=n 1 Z m—1 Aiy €Ay

Z pem A (dap) | Q(21, ..., T C x E™TY)

A, EA

im im

And this last expression is a decomposition of the trees A, 11 appearing in the

RHS of (x) in m subtrees after the first node (taking the branching order into



account). The two expressions are therefore equal and this proves the result. m
This shows that the particular systems we study here all have a global so-
lution. We will show in the next section that it is advantageous to know that

fact when we analyze the stability of systems of differential equations.

3 Systems with a finite number of equations

3.1 Existence of an invariant law

We will show directly that the following system has an invariant solution:

% = n(r(1) —x) — az™ — (m — 1)bz™ 1y
W= lwlm) — ) +aam ey
% = p(r(2m —1) — 2) + mbz™ 1y

with 7(1) + w(m) + 7(2m — 1) = 1. Evidently, such a solution must satisfy the

following identities:

0 = nr()—x)—az™ — (m—1bx™ "y

0 = nlr(m)—y)+aa™ — by

Inspired by [2], we proceed as follows. For C' > 0, let

o) = T )
so) = EImESEE

Note that C' — (az(C)™ ! 4 (m — 1)bz(C)™ 2y(C)) is negative at C = 0

and since z(C) is a decreasing function of C' the expression is positive for C'



high enough. Hence there is a C* > 0 such that
C*z(C*) = (az(C*)™ + (m — 1)ba(C*)™ 'y(C*)).

Substituting this value in (1) and (2) gives us that (z(C*),y(C*)) satisfies the

identities. If we furthermore let

nr(2m — 1) + mbx(C*)™1y(C*)
n

z(C*) =
then (z(C*),y(C*), 2(C*)) is an invariant solution and

n(x(C7) +y(C) +2(C7)) = n(x(1) +x(m) +x(2m — 1))
—C*2(C*) + (az(C*)™ + (m — )bz (C*)™ 'y(C*))

= n(x(1) +x(m) + x(2m — 1))
which shows that the solution is a probability law.

3.2 Exponential asymptotic stability

It is well-known that a system of differential equations is exponentially stable

when the invariant solution of the vector
(n(w(1) — ) — az™ — (m — 1)ba™ 'y, n(w(m) — y) + az™ — bz 'y)

has a Jacobian matrix whose eigenvalues have strictly negative real parts. We

u oz
will show that this is indeed the case for all z,y € [0, 1]. If denote the
wov

Jacobian matrix of the vector, then : u = —n — maz™ "1 — (m — 1)2bz™2y;
z=—(m—1)bx™ Lw = maz™t — (m — Dbz %y;0 = —n — ba™ 1. And

/02—
direct computations show that its eigenvalues have the form pifpe where 6



is strictly positive and p is strictly negative.

4 Extension of the DMM model to the case of
interactions with m agents.

Recall that the evolution equation, denoted (*), in the model with perfect in-

formation transmission but when interactions involve m agents, is written:

2 — () — ()

+ Z ,U“t(nl) e /J“t(nm)h(nh ~--7nm)

ni+...+nm=n

- Z pe(n) - gy () h(n, ma, o Ny )

Nn2,..sNm

We will obtain an invariant law in the case where h(ny,...,nm,) = ¢(ng) - - -
c(n,,) with ¢ bounded. Let d = max{c(n)}. In order to avoid technicalities we

will suppose that the support of 7 is {1+ k(m — 1) }x>o0.

Proposition 2 Ford > 0, let

_ nr(1)
251 (d) = W

and define recursively

/J’lJrk(mfl)(d)

777'((1 =+ k;(m — 1)) + Z c(nl) T C(n’m)lunl (d) e :U'nm (d)
ni+...4ny,=1+k(m—1)
n+c(l+k(m—1))dm-!

10



The equation

d= Y ell+km—1)upimo)(d)
14+k(m—1)>1

admits a unique solution d*. Moreover the law p(d*) is the unique invariant law

of the system (*).

Proof. In order to simplify the notations, let ¢ = ¢(1 +k(m —1));7, = n(1 +
k(m—1)) and Fiy(d) = fr g1y (d). Since nig(d) = 7o — God™ " io(d) < 1o,

then 0 < 7iy(d) < 1. Similarly,
0(Tio(d) + 7y (d) = 1(Fo + 1) + & g (d)™ — d™ " (€oig (d) + a7, (d))
If d > d then
(To(d) + 7y (d) <1 +d" " Golig(d) — 4™ VeoTig(d) <

Note that 1 + kij(m — 1) +1+ke(m —1)+ ..+ 1+ kn(m—1) =1+

m k
Z k; + 1| (m —1). Suppose now that 0 < Zﬁj (d) < 1. Then
j=1 =0

k+1 k+1

n Y md | = n|d 7
=0 =0

k+1

+ Z Z Chey * ooy gy () -+ By, ()
=0 k1ot +1=]
k1

= e (ddm!

Jj=0

11



But

k
SN L d) T, (d)

J=0ki+...+km=j

k k
< Z Chy " Ekmflﬁkl (d) o 'ﬁkm,l(d) Zajﬁj (d)
Kiyeeoskm—1=0 §=0
k
< D Ty ()T, (d)
E1yeeoskm—1=0
k
< Y e T T (D) T, (D
Kiyeeoskm—2=0
k
< Z Chey g, (d)dm_l
k1=0
Hence 0 < Zﬁj(d < 1. Define f(d chuk . Since f(d) < d for
J=0

d > d and f(0) > 0 there exists d* such that f(d*) = d*. Now

Ped) — ym - mld)

+ Z ﬁkl (d*) o 'ﬁkm (d*)ékl © o Chy,
Ktttk =k—1

= > Bld) g, (d) - i, (d)CkCr, - - T,
k2. skm

By definition of d*

> I(d) g, () - Ty, (d°)EkTr, - - - Th,, = Crfig(d) (A7)
ko, kom

And by the definition of i, we get that % = (0. Note moreover that

oo

Z Z T (A" )iy, (%) - <+ Ty, (d7)EkCry - < T, = Ckfig(d) (A7)
k=0ka,..., k=0

12



and similarly

Yo Y B (e T, = (@)

k=0Fki+...+kmn=k—1

So {fi; } is a probability law and its uniqueness follows from [2] pp. 32-36. ®

5 Annex

There is an alternative approach, to the one presented in the first two sections,
to obtain the global solution of the evolution equation of a large interacting set.

It can be briefly described as follows.

Let the process (Z]N(t),..., ZN(t) : 0 <t < T) be defined by an interact-

N>2
ing set of N > m particles whose interactions follow a Poisson process with
intensity % Each group of m particles has a probability of (ﬁ )71 of being
involved in the interaction. The result of the interaction is given by a sym-
metric probability kernel, @Q on (E™,£%™) (the m-fold product of a measur-
able space (E,£)). This description leads to the homogeneous Markov process
(ZN@),..,Z5 ) :0<t < T)N22 .

The global solution of the evolution equation is then obtained as the limit of

i=1
process along well-chosen test functions. More specifically, we take the limit of

N

the sequences << py o >= % Z o(ZN@#):0<t < T) when ¢ belongs
i=1 N>2

to a countable dense set of bounded and continuous functions. As usual, the

N
the sequence, (u{v = % Z dgvpy 1 0<t < T) , of the empirical measures
N>2

problem is solved in two steps: first by establishing the relative compactness of

the sequence and second by showing that the set has a unique limit point. In

13



order to show the relative compactness, it suffices to show that
E[(</~Liv,s0>—</~tiv,s0 SR CTARE <u§,¢>)2] <Ot —s)?

for 0 < s < r <t < T. This is obtained using the jumps compensators and
square field operator of the process (ZN(t),..., Zy (t): 0 <t <T),_,. Once
this is obtained, there only remains to show that the limit points are the Dirac

delta mass on the solution of the non-linear equation. See [3] Ferland-Giroux

(2008) for the details and proofs.
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